Systems

File No. $370-30
Order No. GC20-1819-0

IBM Virtual Machine
Facility/370:
CMS User’s Guide

Release 3 PLC 1

Contains general information and examples for
using the Conversational Monitor System (CMS)
component of IBM Virtual Machine Facility/370
(VM/370).

This publication is written for applications
programmers and nontechnical personnel who
want to learn how to use CMS to create and
modify data files (including VSAM data sets) and
programs , and to compile, test, and debug OS or
DOS programs under CMS.

The CMS Editor and EXEC facilities are described
with usage information and examples.

Prerequisite Publications
IBM Virtual Machine Facility/370: Terminal
User’s Guide, Order No. GC20-1810

IBM Virtual Machine Facility/370: Introduction,
Order No. GC20-1800

JLIBIMI

First Bdition (February 1976)

This edition corresponds to Release 3 PLC 1 (Program lLevel Change) of
IBK Virtual Machine PFacility/370, and to all subsequent releases unless
othervise indicated in new editions or Technical Newsletters.

Changes are periodically made to the specifications herein; before using
this publication in connection with the operation of IBM systeams,
consult the latest IBM System/370 Bibliography, Order Ko. GC20-0001, for

the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments 1is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts 01803. Comments become the property of IBM.

) Copyright International Business Machines Corporation 1976

This publication is intended for . the
general CMS user. It contains information
describing the interactive facilities of
CMS, and includes examples showing you how
to use CMS.

wpart 1. Understanding CMS" contains
sections that describe, in general terms,
the CMS facilities and the CMS
commands that you can use to control your
virtual machine. If you are an experienced
programmer who has used interactive
terminal systems before, you may be able to

Macro Reference publication to find
specific details about CMS commands that
are summarized in this part. Otherwise,
you may need to refer to later sections of
this publication to gain a broader
background in using CHMS.
The topics discussed in Part 1 are:
e What It Means to Have a CMS Virtual
Machine
e VM/370-CMS Environments and Mode
Switching

What You Can Do With VM/370-Cns Commands
The CMS File Systenm

The CMS Editor

Introduction to the EXEC Processor
Using Real Printers, Punches, Readers,
and Tapes

“Part 2. Program Development Using CMS"™

is primarily for applications programmers
who want to use CMS to develop and test OS
and DOS programs under CMS. The topics

discussed in Part 2 are:

e Developing 0S Programs Under CMS
e Developing DOS Programs Under CMS

e Using Access Method Services and VSAM
Under CMS and CMS/DOS
e How VM/370 Can Help You Debug Your
Programs
e Using the CMS Batch Facility
e Programming in the CMS Environment
"pPart 3. Learning to Use EXEC" gives
detailed information on creating EXEC
procedures to use with CMS. The topics
discussed in Part 3 are:
e Building EXEC Procedures
e Using EXECs with CMS Commands
e Refining Your EXEC Procedures
e Writing Edit Macros
"Appendix A: Summary of CMS Commands"
lists the commands available in the CHMS

command environment.

and CP

Preface

"pAppendix B: Summary of CP Conmmands"
lists the CP command privilege classes and
summarizes the commands available in the CP
conmand environment.

"Appendix C: Considerations for 3270
Display Terminal Users" discusses aspects
of VM/370 and CMS that are different or
unique when you use a 3270 display
terminal.

"pAppendix B: Sample Terminal Sessions"

shows sample terminal sessions for:

e Using the CMS Editor and CMS file system
commands

e Using line-number
Editor

e Creating, assembling,
0S program in CMS

e Creating, assembling, and
DOS program in CMS/DOS

e Using Access Method Services in CMS

editing with the CMS
and executing an

executing a

some of the following terms are used, for
convenience, throughout this publication:

e The term "“CMS/DOSY refers to the
functions of CMS that become available
when you issue the command

set dos on

CMS/DOS is a part of the normal CHMS
system, and is not a separate systen.
Users who do not use CMS/D0OS are
sometimes referred to as 0OS users, since
they use the 0S simulation functions of
CMS.

e The term "CMS files" refers exclusively’
to files that are in the 800-byte block
format used by CMS file system commands.
VSAM and O0S data sets and DOS files are
not compatible with the CMS file format,
and cannot be manipulated using CMS file
system commands.

e The terms "disk" and "virtual disk" are
used interchangeably to indicate disks
that are in your CMS virtual machine
configuration. Where necessary, a
distinction is made between
CMs-formatted disks and disks in O0S or
DOS format.

e ®3270% refers to both the IBM 3275
Display Station, Model 2 and the IBM
3277 Display Station, Model 2.

refers to the IBM 3330 Disk

Models 1, 2, and 11, the IBM
3333 Disk Storage and Control Models 1
and 11, and the IBM 3350 Direct Acsess
Storage in 3330 compatibility mode.

e ®333Q0
Storage

e 1n2305" refers to the IBM 2305 Fixed Head
Storage, Models 1 and 2.

e n3340" refers to the IBM 3340 Direct
Access Storage Facility and the IBM 3344
Direct Access Storage.

IBM 3350 Direct
when used in

e %3350" refers to the
Access Storage device
native mode.

e Any information pertaining to the IBM
2741 terminal also applies to the IBM
3767 terminal, unless otherwise noted.

IBM 3344 and 3350
Devices is for
until the

Note: Information on the
Direct Access Storage
planning purposes only
availability of the products.

For a glossary of VM/370 terms, see the
__________________ Facility/370: Glossary
and Master Index, Order Ko. GC20-1813.

have used a
consult the

If this is
computer terminal,

the first time you
you should

VYM/370: Terminal User's Gunide, Order NWo.
6C20-1810, for information on using your
terminal.

1f your terminal is a 3767
Communications Terminal, then IBM 3767
operator's Guide, Order No. GA18-2000, is a
prerequisite.

The IBM Virtual Machine Facility/370:

Introduction, Order No. GC20-1800, contains
an overview of the VM/370 system and its
components, and 1lists the programs and

products that are supported in CMS.

Corequisite Publications

IBM Virtual Machine CHMS

Command and Macro Reference, Order No.
GC20-1818, publication is a companion to
this user's gquide. It contains complete

format descriptions of the CMS commands,
EDIT subcommands, EXEC control statements,
built-in functions, and special variables,
DEBUG subcormands, and CMS assembler
language macros that are discussed or used
in examples in this book.

IBM Virtual Machine Facility/370: System
Messages, Order No. GC20-1808, contains the
responses, error messages, and return codes
issued by the CMS commands, and EDIT and
DEBUG subcommands referenced in this
publication, as well as a complete list of
the error messages issued by the EXEC

processor.

To use CMS, you should be familiar with
the control program (CP) component of
VM/370. The CP commands available to
general users are described in IBM Virtual
Machine Pacility/370: CP Command Reference
for General Users, Order No. GC20-1820. If
you are using CMS to develop programs to
run under other operating systems, see IBM

Virtual Machine Facility/370: Operating
Systems in a Virtual Machine, Order No.
GC20-1821.

Related VM/370 Publications

various CHMS
are normally
personnel are

Additional descriptions of
functions and commands which
used by system support
described in

stem Programmer's Guide Order No.

GC20- 1807

Operator's Guide, Order No. GC20-1806

Planning and System Generation Guide,
order No. GC20-1801
Interactive Problem Control Systenm

(IPCS) User! Guide Order No. GC20-1823

Environmental Recording, Editing, and
Printing (EREP) Program, Order No.
6C29-8300.

There are two
ready reference
VM/370 and CMS.

publications available as
material when you use
They are IBM Virtual

Quick Guide for Users, Order No.
GX20-1926
Command Reference Summary, Order No.
GX20-1961.

Remote

If you are going to use the
Spooling Communications Subsystem, see the
IBM Virtual Machine Facility/370: Remote
Spooling Communications Subsystem (RSCS)
User's Guide, Order No. GC20-1816.

Assembler language programmers may find
information about the VM/370 assembler in
0S/¥S, DOS/¥S, and VM/370 Assembler
Lanquage, Order No. GC33-4010, and 0S/VS
and VM/370 Assembler Programmer's Guide,
order No. GC33-4021.

Related Publications for VSAM and Access

Smdmems emmamdol ==

CMS support of Access Method Services is
based on DOS/VS Access Method Services. The
control statements that you can use are
described in DOS/VS Access Method Services

User's Guide, Order No. GC33-5382. Error
messages produced by the Access Method
Services program, and return codes and

reason codes are listed in DOS/VS Messages,
Order No. GC33-5379.

For a detailed description of DOS/VS
VSAM macros and macro parareters, refer to
the DOS/VS Supervisor and I/0 Macros, Order
No. GC33-5373. PFor information on 0S/VS
VSAM macros, refer to 0S/VS Virtual Storage
Access Method (VSAN) Guide,
Order No. GC26-3818.

Related Publications for CMS/DOS Users

The CMS ESERV coamand
ESERV progran,

invokes the DOS/VS
and uses, as input, the
control statements that you would use in
DOS/VsS. These control statements are
described in Guide to the DOS/VS Assembler,
Oorder No. GC33-4024.

Linkage editor control statements, used

when invoking the DOS/VS 1linkage editor
under CMS/DOS, are described in DOQS/VS
System Control Statements, Order Wo.
GC33-537s6.

PART 1. UNDERSTANDING CMS. . « & o o « o

SECTION 1. WHAT IT MEANS TO HAVE A CMS
VIRTUAL MACHINE . ¢ ¢ ¢ ¢ « o« o o o o o
How You Communicate With VM/370.
Getting Commands Into the System . . .
Loading CMS in the Virtual Machine:
The IPL Command . . . « o o @
Logical Line Editing Symbols « o < =
How VM/370 Responds to Your Commands
Getting Acquainted With CMS. . . . «
Virtual Disks and How They Are Deflned
Permanent Virtual Disks. « « « « .« .
Defining Temporary Virtual Disks . .
Formatting Virtual Disks « . « .+ « -«
Sharing Virtual Disks: Linking
Identifying Your Disk To CMS: Accessing
Releasing Virtual Disks. <« .

SECTION 2. VM/370 ENVIRONMENTS AND MODE

SWITCHING ¢« « ¢ o o o ¢ o o o = .
The CP Environment
The CMS Environment.
EDIT, INPUT, and CMS Subset. .
DEBUG. ¢ ¢ o « ¢ o « o o o o =
CHS/DOS. 4 & o o « o o o o o =
Interrupting Program Execution .
Virtual Machine Interrupts . .
Control Program Interrupts . .
Address Stops and Breakpoints.

o & o 8 o5 & 4 & 3
s . & o & o & a2 & o @
e 8 & 4 & 8 s & @

o o 8 & & 2 o & & »

SECTION 3. WHAT YOU CAN DO WITH
VM/370-CMS COMMANDS . ¢ o o o o o o o o
Command Defaults « « +« ¢ o o o o « o o =«
Commands to Control Terminal
Communications. « « ¢ ¢ ¢ o o o ¢ o o o
Establishing and Terminating
Communications with VvM/370.
Controlling Terminal Output. o & e .
Commands to Control How VH/370
Processes Input Lines . . . « o o
Controlling Keyboard—dependent
Communications. « + « o« o ¢ o « o o &
Commands to Create, Modify, and Move
Data Files and Programs . . . « « o« &
Commands that Create Files
Commands that Modify Disk Files. . .
Commands to Move Files . . « . « «
Commands to Print and Punch Files. .
Commands to Develop and Test 0S and CMS
Programs. e o o o & o
Commands to Develop and Test DOs
PYOGTAMSe « « o « « o o o s o o o o o =
Commands Used in Debugging Programs. . .
Commands to Request Information. . . .
Commands to Request Information About

Terminal Characteristics.
Commands to Request Information About
Data FileS. « ¢« o ¢ o« o o o o o -« e

Commands to Request Information About
Your Virtual Disks. . « ¢« ¢ ¢ « o o o

11

13
13
15

16
16
18
20
21
21
22
22
23
24
24

Contents

Commands to Request Information About

Your Virtual Machine. . . . « . .

SECTION 4. THE CMS FILE SYSTEM . . .
CMS File Formats « o o o
How CMS Files Get Their Names. o o o
Duplicating Filenames and Filetypes
What Are Reserved Filetypes?
Filetypes for CMS Commands . .
Qutput Files: TEXT and LISTING
Filetypes for Temporary Files.
Filetypes for Documentation. .
Filemode letters and Numbers . .
When to Specify Filemode Letters:
Reading Files e o o o o
When to Specify Fllenode letters:
Writing Files « o o
How Filemode Numbers are Used.
Managing Your CMS Disks. « « « =«
CMS File Directories « . « « « &
CMS Command Search Order

SECTION 5. THE CMS EDITOR. .
The EDIT Command
Writing a File Onto Dlsk .
EDIT Subcommrands . « « «
The Current Line Pointer
Verification and Search Columns. .
Changing, Deleting, and Adding Lines
Describing Data File Characteristics
Record Length. . ¢ « ¢ ¢ ¢ o « o &
Record PFormat. « « . « ¢ ¢ ¢ o o &«
Using Special Characters
Setting Truncation Limits.
Entering a Continuation Character i
Column 72 . . . « . .
Serializing Records. . .
Line-Number Editing. . .
Renumbering Lines. . . .
Controlling the Editor
Communicating with CMS and CP. .
Changing File Identifiers. . . .
Controlling the Editor's Displays
Preserving and Restoring Editor
SettingSe « ¢ « « ¢ 2 o ¢ o o o
X, ¥, =, ? Subcommands . . . ¢ o

e 2 o o
e s 8 o
. s 8 & &

-

Y o s o

® o 8 & o 8 o & e s 8 o 0 s s s s 0 s s

What To Do When You Run Out of Space

Summary of EDIT Subcommands. . « « .

SECTION 6. INTRODUCTION TO THE EXEC
PROCESSOR « @« ¢ o o « & " .
Creating EXEC Files. . « « « « o« &
Invoking EXEC Files. . o o
PROFILE EXECSe ¢ « o o o o o o« o = o
Executing Your PROFILE EXEC. . . .
CMS EXECs and How To Use Them. . . .
Modifying CMS EXECS. « « « o « « «
Summary of the EXEC Language Faciliti

1

Arguments and Variables. . .
Assignment Statements. . . .
Built-in Functions and Specia
Variables « ¢« « ¢ ¢ ¢ ¢ o o

. 50

e o 0 o » e & a o o o o e s
(o) w
= &

® s & s o o 0 6 & v & @
~l
[+,

. . » []
(Y]
Y

. L] . .
O
=)

Flow Control in an EXEC. « .
Comparing Variable Symbols and
Constants e e e o eo.e o
Doing I/O With an EXEC e s e s s e @
Monitoring EXEC Procedures . . .- .
Summary of EXEC Control statements and
Special Variables . . . « . . « . . .

SECTION 7. USING REAL PRINTERS,
PUNCHES, READERS, AND TAPES .
CMS Unit Record Device Support
Using the CP Spooling Systen
Alteang Spool Files . . .
051ng Your Card Punch and Car
in cHMSs. e .« o
Handling Tape Flles in CHS o« o
Using the CMS TAPE Command .
Tape Labels in CMS
The MOVEFILE Command
Tapes Created by 0S Utility Progra
Specifying Special Tape Handling
OPtions o ¢ ¢ ¢ ¢« ¢ « o o « o o o« &
Using the Remote Spooling
Communications Subsystem (RSCS) . . .

der

e
L)
S

e

s & s ¢ Do s ¢
e & o & js s g
* o 8 & ¢ e s s »

PART 2. PROGRAM DEVELOPMENT USING CMS.

SECTIONK 8. DEVELOPING 0S PROGRAMS UNLER

<111

<113
113
. 115

.116

<121
121
121
.123

. 124
. 126
« 127
129
. 130
.130

131
131

. 133

CMS « o ¢ ¢ ¢ o ¢ o o o o o o o o o« o 2135
Using OS Data Sets in CMS. . . . « . « .137
Access Methods Supported by CMS. . . .138
Using the FILEDEF Command.139
Specifying the ddname. 139
Specifying the Device Type139
Entering File Identifications.140
Specifying Options « 141
Creating CMS Files From 0S Data Sets . .142
Using CMS Libraries. . « . « « 4 « . . 144
The MACLIB Command « . . o145
Using 0S Macro Libraries . . . « « « 148
Using OS Macros Under CMS. . . « « o « 149
Assembling Programs in CMS149
Executing Programs . . « « « « « « « o 2151
Executing TEXT Files . . « « « « « o« «152
TEXT LIBRARIES (TXTLIBS) . . « « « « 153
Resolving External References.154
Controlling the CMS Loader155
Creating Program Modules156
Using EXEC Procedures. . « « o « « « 2157
SECTION 9. DEVELOPING DOS PROGRAMS
UNDER CMS « ¢ ¢ o o« ¢« o o o « o« o« « o« «159
The CMS/DOS Environment. . . . « « « . .159
Using DOS Files on DOS DisksS . « « « - 160
Reading DOS Files. . . . e o o o o o162
Creating CMS Files from DOS Libraries. 162
Using the ASSGN Command.164
Manipulating Device Assignments. . . .165
Virtual Machine Assignments.166
Using the DLBL Command . « « « « « « o o166
Entering Pile Identifications.166
Using DOS Libraries in CMS/DOS168
The SSERV Command. « « « « « « « « « o168
The RSERV Command. « . « « ¢ « « « « o169
The PSERV Command. . . « « « « « o « 169
The ESERV Command. . « « « ¢« « « « « o170
The DSERV Command. . . . « « « « « « 171
Using DOS Core Image Libraries171

Using Macro Libraries. . .
CMS MACLIBS. « o « « .
Creating a CMS HACLIB. .
The MACLIB Command . . .

Assembling Source Programs

DOS Assembler Language Macros Sup
S

Link-editing Programs in CMS/DO

Linkage Editor Input . .

Linkage Editor Output: CMS DOSLIB
Executing Programs in CMS/DOS. . .

Executing DOS Phases . .

po

o ¢ lle s o e o o »

e e e o

Search Order for Executable Phases
Making I/0 Device Assignments. . .

Specifying a Virtual Partition Size

Setting the UPSI Byte. .

Debugging Programs in CMS/DOS. . .
Using EXEC Procedures in CMS/DOS .

SECTION 10. USING ACCESS METHOD
SERVICES AND VSAM UNDER CMS AND

CMS/DOS v v o« « o « « o «

Executing VSAM Programs Under CMS.

Using the AMSERV Command .
AMSERV Output Listings .

.

<172
<172
.172
.173

ted. 176

Controlling AMSERV Command Llstlngq.
Manipulating 0S and DOS Disks for Use

with AMSERV « .
Using VM/370 Hlnldlsks -
Using The LISTDS Command
Using Temporary Disks. .

Defining DOS Input and Output Plles.

Using VSAM Catalogs. . .

Defining and Allocating Space for

VSAM files. « «

Using Tape Input and Output. . . .
Defining 0S Input and Output Files .
Allocating Extents on 0S Disks and

Minidisks
Using VSAM Catalogs. . .

Defining and Allocating Space for

VSAM files. « o & « &

Using Tape Input and Output. . . .

Using AMSERV Under CMS . .

.178
. 179
«179
. 181
. 182
. 182
.183

«209

Using the DEFINE and DELETE Funct10ns.209
and EXPORT
(or EXPORTRA/IMPORTRA) functions.

Using the REPRO, IMPORT,
Writing EXECs for AMSERV

SECTION 11. HOW VM/370 CAN
DEBUG YOUR PROGRAMS . . .
Preparing to Debug
When a Program Abends. . .
Resuming Execution After
Check« .
Using DEBUG Subcommands to
Program Execution
Using Symbols with DEBUG

What To Do When Your Program Loops

Tracing Program Activity .

Using the CP TRACE Command . . .
Using the SVCTRACE command . . .
Using CP Debugging Commands. . . .

and VSAM.

HELP YOU

a Program
Monitor

® s & & o s @

Debugging with CP After a Progranm

Check . ¢« ¢ o & o o o &
Program DUEPS. « « « « o« o«
Debugging Modules.

Comparison Of CP And CMS PFacilities For

Debugging

<211
212

215
215
.215

216

217
.218
.220
.220
221
.223
.223

. 224
«225
. 225

« 226

What Your Virtual Machine Storage Looks
Like. L] - - - - L] L] L] . L] - L] - - .227
Shared and Nonshared Systems e e e o 227

SECTION 12, USING THE CMS BATCH

FACILITY. . . . e« o o o o o231
Submitting Jobs to the CHS Batch
FPacility. e« o« o o o o o231
Input to the Batch uachlne e o o o o 2231
How the Batch Facility Works234
Preparing Jobs for Batch Execution .« 234
Restrictions on CP and CMS Connands
in Batch JObS . ¢ & & 4 ¢ o o o o « <235
Batch Facility output.236

Using EXEC Files for Input to the Batch

Facility. . . . e o o o o o o o 236
Sample Systea Procedures for Batch
Execution e o o o o o o s 4238
A Batch EXEC for a Non-cus User. . . .239
SECTION 13. PROGRAMMING FOR THE CMS
ENVIRONMENT . . . ¢« o o = o o o o « « 2241
Program Linkage. . « « ¢ o o o o o « o <201
Return Code Handling « « « « « ¢« + « <202
Parameter Lists. . . . e o o o o o 242
Calling a CMS Coamand fron a Program . .243
Executing Program Modules.2u44
The Transient Program Area . . . « . 245
CHS Macro Instructions245
Macros for Disk File Manipulation. . .245
CMS Macros for Terminal
Communications. « «251
CHS Macros for Unit Record and Tape
/0 . . . e o o o o e o o« o« 251
Interrupt Handllng Macros. « « « o o 252
PART 3. LEARNING TO USE EXEC . . « « « +253
SECTION 14. BUILDING EXEC PROCEDURES . .255
What is a TokeR? « ¢« ¢« ¢ ¢« ¢ « « o« o« o «255
Variables. . ¢ o ¢ ¢ o 4 o o o s o « o 2256
ATgURENtS. « « o ¢« o« o« « 258
Using the SINDEX Spec1a1 Variable. « «260
Checking Arguments « « « « 4260
Execution Paths in an BXEC . « « « « « 4262
Labels in an EXEC Procedure.262
Conditional Execution with the &IF
Statement «263

Branching with the GGOTO statenent « +264
Branching with the §SKIP Statement . .266
Using Counters for Loop Control. . . .266
Loop Control with the &ELOOP Statement.267
Nesting EXEC Procedures. . . « « « « 2269
Exiting From EXEC Procedures269
Terminal Communications.271
Reading CMS Commands and EXEC Control

Statements from the Terminal.271
Displaying Data at a Terminal.272
Reading from the Console Stack275
Stacking CHMS CoBmANdAS. « « o« « o o « 277
Stacking Lines for EXEC to Read. . . .278
Clearing the Comnsole Stack . « « « . .279
File Manipulation with BEXECs280
Stacking EXEC Files. . « « « « « « « .280
SECTION 15. USING EXECS WITH CMS
COMMANDS. . . & . o o o e o o +285
Monitoring CMS Colnand Executlon e o o #285

Handling Error Returns From CMS

Commands. . . . e« o o« o o286
Using the GERROR COntrol statenent . .286
Using the ERETCODE Special Variable. .287

Tailoring CMS Commands for Your Own Use.288

Creating Your Own Default Filetypes. .289
SECTION 16. REFINING YOUR EXEC
PROCEDURES. . . . e e e e e s o o 291
Annotating EXEC Procedures e e o o o o 291
Error Situations ¢ . ¢ ¢ . . . 2292
Writing Erreor Messages . « « « « . o .292
Debugging EXEC Procedures. . . « « « « 294
Using CMS Subset e o o o« o <294
Summary of EXEC Interpreter Logic. . .295
SECTION 17. WRITING EDIT MACROS.297
Creating Edit Macro Files.297
How Edit Macros Work . « « ¢« « « o« « o .297
The Console Stack. . . e o o o o = «299
Notes on Using EDIT Subcomnands. e o o« <300
The STACK Subcommand . . . « « « « « 303
An Annotated Edit Macro. 304
User-Written Edit Macros . « « « « « « 306
$MACROS. « «. « o o = o« o o« « o o o « 306
$MARK. « ¢ 4 ¢ « o a o « a o s o o « 307
$POINT - - L] L] - - - L] . L] - - L] - . .309
$COL ¢ . ¢ ¢ o o o-2 o = o o o o o « <310
APPENDIXES ¢ ¢ o « o o o o o o o« o o » o311
APPENDIX A: SUMMARY OF CMS COMMANDS. . .313
APPENDIX B: SUMMARY OF CP COMMANRDS . . .319
APPENDIX C: CONSIDERATIONS FOR 3270
DISPLAY TERMINAL USERS. . . « « « « « 4325
Entering Commands. . . « « ¢« « « o « « 325
Setting Program Function Keys.325
Controlling the Display Screem326
Console Output . & o o o o « o o « « <328
Signaling Interrupts . .« . « « « « « o 329
Halting Screen Displays. . =« - « « « 4330
Using the CMS Editor with a 3270330
Entering EDIT Subcommands.330
Controlling the Display Screen332
The Current Line Pointer333
Using Program Punction Keys.334
Using the Editor in Line Mode.334
Using Special Characters on a 3270 . .335
Using APL with a 3270. « .336
Brror Situations 0337
Leaving the APL Environment.337

APPENDIX D: SAMPLE TERMINAL SESSIONS . .339
Sample Terminal Session Using the

Editor and CMS File System Commands . .340
Sample Terminal Session Using
Line-Number Editing « o e @
Sample Terminal Session For os
PrOgramEmers « « « « o & . o« o o o
Sample Terminal Session for DOS
Progranmmers. « . . . « » o o @
Sample Terainal Session 051ng Access
Method Services « « ¢« ¢« & ¢ o o o o o

.3u8
.351
.355
.361

IuDEx. - Ld L] . . . - - L L] - - - L] - - ‘369

Figures

Figure
Figure

Figure
Figure

Figure
Figure
Figqure
Figqure
Figure
Figure
Figure

Figure

Figure

2.
3.

5.
6.
7.

9‘
10.
1.
12.

13.

VM/370 Environments and Mode
SWitChing.ceececececcnacscnsss3l
Filetypes Used by CMS
COMMANAS.ecaeascsscassancasssaedD
Filetypes Used in CMS/DOS.....57
How CMS Searches for the

Command to EXeCUtE€eecscccceccessb
Positioning the Current Line
POiNterececcccsscsacovscovcnaccs 16
Number of Records Handled by

the BAditOreccccccccccccccnsesaBl
Summary of EDIT Subcommands and
MACrOSecesccescccscccncsssscseead?
Summary of EXEC Built-in
FUNCtionS..cececcscccsseccccaslll
Summary of EXEC Control
StatementSccacceccscocscscscsellb
EXEC Special Variables.......119
0S Terms and CMS Equivalents.136
CMS Commands That Recognize

0S Data Sets and 0S Disks....137
Creating CMS Files From O0S

Data SetS.cceccacccnccccccssss llll

Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure

Figure
Figure

Figure
Figure
Figure

14.
15.
16.

17.
18.

19.
20.

21.

22.
23.

24,
25,
26.

0S Macros Simulated by CMS...150
CMS/D0OS Commands and CMS
Commands with Special Operands
fOr CMS/DOS.ccecacecnscccoseslb?
DOS/VS Macros Supported by
CMSeecacacacuscsssnscscccncsesell?
Summary of DEBUG Subcommands.219
Comparison of CP and CMS
Facilities for Debugging.....226
simplified CMS Storage Map...228
Sample CMS Assembler Program
Entry and Exit Linkage.......242
A Sample Listing of a

Program That Uses CMS Macros.250
CHS Command SUMMBAIYcesacecees31l
CP Privilege Class
DesSCriptionSsceecccccecccceea3l9
CP Command SUMMACYeeecoeeseeesa320
3270 Screen Display.ecceceeess329
How the CMS Editor Formats

a 3270 SCreeNeccesccsscascsasalldl

Part 1. Understanding CMS

Learning how +to use CMS is not an end in itself: you have a specific
task or tasks to do, and you need to use the computer to perform then.
CMS has been designed to make these tasks easier, but if you are
unfamiliar with CMS, then the tasks may seem more difficult. The
information contained in Part 1 of the user's guide is organized to help
you make the acquaintance of CMS quickly, so that it enhances, rather
than impedes, the performance of your tasks.

"Section 1. What It Means To Have a CMS Virtual Machine" introduces
you to VM/370 and its conversational component, CMS. It should help you
to get a picture of how you, at a terminal, use and interact with the
systen.

During a terminal session, commands and requests that you enter are
processed by different parts of the system. How and when you can
commnunicate with these different programs, is described in "Section 2.
VM/370 Environments and Mode Switching."

There are almost two hundred commands and subcommands comprising the
VHM/370 language. There are some that you may never need to wuse; there
are others that you will use over and over again. "Section 3. What You
Can Do With VM/370-CMS Commands"™ contains a sampling of commands in
various functional areas, to give you a general idea of the kinds of
things you can do, and the commands available to help you do thenm.

Almost every CMS command that ©you enter results in some kind of
activity with a direct access storage device (DASD), known in CMS simply
as a disk, or minidisk. Data and programs are stored on disks in what
are called "files." "Section 4. The CMS File System" introduces you to
the creation and handling of CMS files.

#Section 5. The CMS Editor" contains all the basic informaticn you
need to create and write a disk file directly from your terminal, or to
correct or modify an existing CMS file.

Just as important as the CMS Editor is another CMS facility, called
the EXEC processor or interpreter. Using EXEC files, you can execute
many commands and programs by entering a single command 1line from your
terminal, or you can write your own CMS commands. "Section 6.
Introduction to the EXEC Processor" presents a survey of the basic
characteristics and functions of EXEC.

wSection 7. Using Real Printers, Punches, Readers, and Tapes"

discusses how to use punched cards and tapes in CMS, and how to use your
virtual printer and punch to get real output.

Part 1. Understanding CMS 11

Section 1. What It Means To Have a CMS Virtual Machine

virtual Machine Facility/370 (VM/370) is a system control program that
controls ‘“virtual machines." A virtual machine 1is the functional
equivalent of a real computer, but where the computer has 1lights,
buttons, and switches on the real console to control it, you control
your virtual machine from your terminal, using a command language of
active verbs and nouns. There are actually three command languages, CP,
CMsS, and RSCS.

The command languages correspond roughly to the three components of
VM/370: the Control Program (CP), the Conversational Monitor System
(CMs), the Remote Spooling Communications Suksystem (RSCS), and the
Interactive Problem Control System (IPCS). CP controls the resources of
the real machine; that is, the physical machine in your computer room;
it also manages the communications among virtual machines, and between a
virtual machine and the real systen. CMS 1is the conversational
operating system designed specifically to run under CP; it can simulate
many of the functions of the 0S and DOS operating systems, so that you
can run many 0S and DOS programss in a conversational environment. RSCS
is a subsystem designed to supervise transmission of files across a
teleprocessing network controlled by CP. IPCS provides systenm
programmers and installation support personnel with problem reporting
and analysis functions. Its commands execute in the CMS command
environment.

Although this publication is concerned primarily with using CMS, it
also contains examples of CP commands that you, as a CMS user, should be
familiar with.

How You Communicate with VM/370

When you are running your virtual machine under VM/370, each command, or
request for work, that you enter on your terminal is processed as it is
entered; usually, you enter one command at a time and commands are
processed in the order that you enter then.

You can enter CP commands from either the CP or CMS environment; but
you cannot enter CMS commands while in the CP environment. The concept
of "environments" in VM/370 is discussed in "Section 2. VM/370
Environments and Mode Switching."

After you have typed or keyed in the line you wish to enter, you
press the Return or Enter key on the keyboard. When you press this key,
the line you have entered is passed to the command environment you want
to have process it. If you press this key without entering any data,
you have entered a "null 1line." Null lines sometimes have special
meanings in VM/370.

If you make a mistake entering a line, VM/370 tells you what your
mistake was, and you must re-enter the entire command 1line. The
examples in this publication assume that the command lines are correctly
entered.

You can enter commands using any combination of uppercase and
lowercase characters; VM/370 translates your input to uppercase.
Examples in this publication show all user-entered input 1lines in
lowercase characters and system responses in uppercase characters.

Section 1. What it Means to Have a CMS Virtual Machine 13

The CP Command Language

You use CP commands to communicate with the contrcl program. CP commands
control the devices attached to your virtual machine and their
characteristics.

For example, if you want to allocate additional disk space for a work
area or if you want to increase the virtual address space assigned to
your virtual machine, use the CP command DEFINE. CP takes care of the
space allocation for you, and then allows your virtual machine to use
it.

Oor, if for example, you are receiving printed ocutput at your terminal
and do not want to be interrupted by messages from other VM/370 users,
you can use the CP command SET MSG OFF to refuse messages, since it is
CP that handles communication among virtual machines.

Using CP commands, you can also send messages to the VM/370 systenm
operator and to other users, modify the configuration of devices in your
virtual machine, and use the virtual machine input/output devices. CP
commands are available to all virtual machines using VM/370. You can
invoke these commands when you are in the virtual machine environment
using CMS (or some other operating system) in your virtual machine.

The CP commands and command privilege classes are listed in "Appendix
B: Summary of CP Commands" and are discussed in detail in the ¥M/370: CP

Command Reference for General Users and VM/370: Operating Systems in a
Virtual Machine. However, since many CP commands are used in
conjunction with CMS commands, some of the CP commands you will use most
frequently are discussed in this publication, in the context of their
usefulness for a CMS application. To aid you in distinguishing between
CMS commands and CP commands, all CP commands used in examples in this

publication are prefaced with "CP".

The CMS Command Language

The CMS command language allows you to «create, modify, and debug
problem, or application programs and, in general, to manipulate data
files. ‘

Many OS language processors can be executed under CMS: the asseabler,
VS BASIC, OS FORTRAN IV, 0S COBOL, and O0S PL/I Optimizing and Checkout
Compilers. In addition, the DOS/VS COBOL and DOS/VS PL/I Progranm
Products are supported. You can find a comprehensive list of language
processors that can be executed under CMS and relevant publications in
the VM/370: Introduction. CMS executes the assembler and the compilers
when you invoke them with CMS commands. The ASSEMBLE command is used to
present examples in this publication; the supported compiler commands
are described in the appropriate DOS and OS Program Product
documentation.

The EDIT command invokes the CMS Editor so that you can create and
modify files. The EXEC facilities allow you to execute procedures
consisting of CP and CMS commands; they also provide the conditional
execution capability of a macro language. The DEBUG command gives you
several program debugging subcommands.

Other CMS commands allow you to read cards from a virtual card
reader, punch cards to a virtual card punch, and priat records on a
virtual printer. Many commands are provided to help you manipulate your
virtual disks and files.

14 IBM VM/370: CMS User's Guide

Since you can invoke CP commands from within the CMS virtual machine
environment, the CP and CMS command languages are, for practical
purposes, a single, integrated command language for CMS users.

GETTING COMMANDS INTO THE SYSTEM

Before you can use CP and CMS, you should know (1) how to operate your
terminal and (2) your userid (user identification) and password.

The Terminal: Your Virtual Consgle

There are many types of terminals you can use as a VM/370 virtual
console. Before you can conveniently use any of the commands and
facilities described in this publication, you have to familiarize
yourself with the terminal you are using. Generally, you can f£find
information about the type of terminal you are using and how to use it
with VM/370 in the VM/370: Termipal User's Guide. If your terminal is a
3767, you also need the IBM 3767 Operator's Guide.

In this publication, examples and usage notes assume that you are
using a typewriter-style terminal (such as a 2741). If you are using a
display terminal (such as a 3270), consult "Appendix C: Considerations
for 3270 Display Terminal Users"® for a discussion of special techniques
that you can use to communicate with VM/370.

Your Userid and Password: Keys into the System

Your userid is a symbol that identifies your virtual machine to VM/370
and allows you to gain access to the VM/370 system. Your password is a
symbol that functions as a protective device ensuring that only those
authorized to use your virtual wmachine can 1log on. The userid and
password are wusually defined by the system programmer for your
installation.

Contacting VM/370

To establish contact with VM/370, you switch the terminal device on and
VM/370 responds with some form of the message

vm/370 online

to let you know that VM/370 is running and that you can use it. If you
do not receive the "vm/370 online" message, see the VM/370: Terminal
User's Guide for specific directions. You can now press the Attention

key (or equivalent) on your terminal and issue the LOGON command to
identify yourself to the systenm:

cp logon smith
where SMITH represents a userid. The 10GON command is entered by
pressing the Return (or Enter) key. If VM/370 accepts your userid, it
responds by asking you for your password:

ENTER PASSWORD:
You then enter your password, which may be hidden, depending on your
terminal.

Section 1. What it Means to Have a CMS Virtual Machine 15

LOADING CMS IN THE VIRTUAL MACHINE: THE IPL COMMAND

You load CMS in your virtual machine using the IPL command:
cp ipl cms

where "cms" is assumed to be the saved systenm name for your
installation's CHMS. You could also load CMS by referring to it using
its virtual device address, such as 190:

cp ipl 190
VM/370 responds by displaying a message such as:
CMS VERSION v.3 - 02/28/76 12:02

to indicate that the IPL command executed successfully and that CMS is
loaded into your virtual machine.

Your userid may be set up for an automatic IPL, so that you receive
this message, indicating that you are in the CMS command environment,
without having to issue the IPL command.

Now you can enter a null line to begin your virtual machine
operation.

Note: If this is the first time you are using a new virtual disk

assigned to you, you receive the message
DMSACC112S DISK'A (191)' DEVICE ERROR

and you must "format" the disk, that is, prepare it for use with CMS
files. See "Formatting Virtual Disks" below.

Logical Line Editing Symbols

To aid you in entering command or data lines from your terminal, VM/370
provides a set of logical 1line editing symtols, which you can use to
correct mistakes as you enter 1lines. Each symbol has been assigned a
default character value. These normally are:

Symbol Character
Logical character delete @
Logical line end #
Logical line delete 4

Logical escape "

Logical Character Delete

The logical character delete symbol (@) allows you to delete one or more
of the previous characters entered. The @ deletes one character per ?
entered, including the ¢ and # logical editing characters. For example:

ABC#@@ results in AB
ABC@D results in ABD
¢@DEF results in DEF
ABC@2@ deletes the entire string

16 IBM VM/370: CMS User's Guide

Logical Line End

The logical 1line end symbol (#) allows you to key in more than one
command on the same line, and thus minimizes the amount of time you have
to wait between entering commands. You type the # at the end of each
logical command line, and follow it with the next logical command line.
VM/370 stacks the commands and executes them in sequence. For exanmple,
the entry

query blip#query rdymsg#query search
is executed in the same way as the entries:

query blip
query rdymsg
query search

The logical line end symbol also has special significance for the #CP
function. Beginning any physical line with #CP indicates that you are
entering a command that is to be processed by CP immediately. If you
have set a character other than # as your logical 1line end symbol, you
should use that character instead of a #.

Logical Line Delete

The logical line delete symbol (¢) (or [for Teletype! Model 33/35
terminals) deletes the entire previous physical 1line, or the last
logical line back to (and including) the previous logical line end (#).
You can use it to cancel a line containing many or serious errors. If a
immediately precedes the ¢ sign, only the # sign is deleted, since the
indicates the beginning of a new line, and the ¢ cancels the current
line. For example:

e Logical Line Delete:
ABC#DEF¢ deletes the #DEF and results in ABC
ABC#¢ results in ABC
ABC#DEF£#GHI results in ABC#GHI
ABC#DEF¢GHI results in ABCGHI
e Physical Line Delete:
ABC¢Z deletes the whole line
Note that when you cancel a line by using the ¢ logical line delete

symbol, you do not need to press a carriage return; you can continue
entering data on the same line.

- - - - o= -

1Trademark of the Teletype Corporation, Skokie, Illinois.

Section 1. What it Means to Have a CMS Virtual Machine 17

Logical Escape

The logical escape symbol (") causes VM/370 to consider the next
character entered to be a data character, even if it is normally one of
the logical line editing symbols (@, ¢, ", or #). For example:

ABC"¢D results in ABCZD
wnpABCHW" results in "“ABC"

If you enter a single logical escape symbol (") as the last character
on a line, or on a line by itself, it is ignored.

Defining Logical Line Editing Symbols

The logical 1line editing symbols are defined for each virtual machine
during VM/370 system generation. If your terminal's keyboard lacks any
of these special characters, your installation can define other special
characters for logical-line editing. You can find out what logical line
editing symbols are in effect for your virtual machine by entering the
command

cp query terminal
The response might be something like:

LINEND # , LINEDEL ¢ , CHARDEL @ , ESCAPE "
LINESIZE 130, MASK OFF, APL OFF, ATTN OFF, MODE VM

You can use the CP TERMINAL command to change the logical 1line
editing characters for your virtual machine. For example, if you enter:

cp terminal linend /
Then, the line:
input # line / input / #
would be interpreted:
input # line
input
#
The terminal characteristics listed in the response to the CP QUERY

TERMINAL command are all controlled by operands of the CP TERMINAL
command.

HOW VM/370 RESPONDS TO YOUR COMMANDS

CP and CMS respond differently to different types of requests. All CMS
command responses (and all responses to CP commands that are entered
from the CMS environment) are followed by the CMS Ready message. The
form of the Ready message can vary, since it can be changed using the
SET command. The long form of the Ready message is:

R; T=7.36,/19.89 09:26:11

18 IBM VM/370: CMS User's Guide

If you have issued the command
set rdymsg smsg

the Ready message looks like:
R;

When you enter a command 1line incorrectly, you receive an error
message, describing the error. The Ready message contains a return code
from the command, for example

R(00028) ;

indicates that the return code from the command was 28.

Some Sample CP

and CMS Command Responses

If you enter a CP or CMS command that requests information about your
virtual machine, the response should be the information requested. For
example, if you issue the command

cp display g

CP responds by showing you the contents of your virtual wmachine's
general registers, for example:

GPR 0 = 00000003 00003340 000007A0 00000003
GPR 4 = 00000848 Cu4u04040 00000040 00002DFO
GPR 8 = 00000008 000132Fr8 00002BA0 00002230
GPR 12 = 00003238 FFFFFFFD 50013386 00000000

Similarly, if you issue the CMS command
listfile * assemble c
you might receive the following information:

JUNK ASSEMBLE C1
MYPROG ASSEMBLE C1

If you enter a CP command to alter your virtual machine configuration
or the status of your spool files, CP responds by telling you that the
task is accomplished. The response to

cp purge reader all
might be
0004 FILES PURGED

Some CP commands, those that alter some of the characteristics of
your virtual machine, give you no response at all. If you enter

cp spool e class x hold
you receive no response from CP.
Certain CMS commands may issue prompting messages, to request you to
enter more information. The SORT command, which sorts CMS disk files,

is an example. If you enter:

sort in file a1l out file a1

Section 1. What it Means to Have a CMS Virtual Machine 19

you are prompted with the message:
DMSSRT604R ENTER SORT FIELDS:

and you can then specify which fields you wish the input records to be
sorted on.

Getting Acquainted with CMS
If you have just logged on for the first time, and you want to try a few
CMS commands, enter:

query disk a
The response should tell you that you have an A-disk at virtual address
191; it also provides information such as how much room there is on the
disk and how much of it is used. Again, if you receive an error message

that indicates the disk may not be formatted, see "Pormatting Virtual
Disks."

Your A-disk is the disk you use most often in CMS, to contain your
CMs files. PFiles are collections of data, and may have many purposes.
For this exercise, the data is meaningless. Enter

edit junk file

You should receive the response

NEW FILE:
EDIT:

which indicates that this file does not already exist on your A-disk.
Enter:

input
You should receive the response:

INPUT:
and you can start to create the file, that is, write input records that
are eventually going to be written onto your A-disk. Enter 5 or 6 data
lines, such as

hickory dickory dock

the mouse ran up the clock

the clock struck one

and down he run

dickory hickory dock

Now, enter a null line (one with no data). You should receive the
mnessage

EDIT:
Enter
file
You should see the message

R; T=0.01,/0.02 19:31:29

20 IBM VM/370: CMS User's Guide

You have just written a CMS file onto your A-disk. If you enter:
type junk file a
you should see the following:

HICKORY DICKORY DOCK

THE MOUSE RAN UP THE CLOCK
THE CLOCK STRUCK ONE

AND DOWN HE RUN

DICKORY HICKORY DOCK

The CMS command, TYPE, requested a display of the disk file JUNK FILE,
on your A-disk.

To erase the file, enter
erase junk file
Now, if you re-enter the TYPE command, you should receive the message
FILE NOT FOUND

Most CMS commands create or reference disk files, and are as easy to
use as the commands shown above. Your CMS disks are among the most
important features in your VM/370 virtual machine.

Virtual Disks and How They Are Defined

Under VM/370, a real direct access storage device (DASD) unit, or disk
pack, can be divided into many small areas, called minidisks. Minidisks
(also called virtual disks because they are not equivalent to an entire
real disk) are defined in the VM/370 directory, as extents on real
disks. For CMS applications, you never have to be concerned with the
extents on your minidisks; when you use CMS-formatted minidisks, they
are, for practical purposes, functionally the same as real disks.
Minidisks can also be formatted for use with O0S or DOS data sets or VSAM
files.

You can have both permanent and temporary disks attached to your
machine during a terminal session. Permanent disks are defined in the
VM/370 directory entry for your virtual machine. Temporary disks are
those you define for your own virtual machine wusing the CP DEFINE
command, or those attached to your virtual machine by the systenm
operator.

PERMANENT VIRTUAL DISKS

The VM/370 directory entry for your userid defines your permanent
virtual disks. Each disk has associated with it an access mode
specifying whether you can read and write on the disk or only read from
it (its read/write status). Virtual disk entries in the VM/370
directory may look like the following:

MDISK 190 2314 000 050 CHMS190
MDISK 191 3330 010 005 BDISKE
MDISK 194 3330 010 020 CMSO001
MDISK 198 3330 050 010 CMS192
MDISK 19E 3330 010 050 CHMS19E

ITEE®ED

Section 1. What it Means to Have a CMS Virtual Machine 21

The first two fields describe the device, minidisk in this example,
and the virtual address of the device. Vvirtual addresses (shown above
as 190, 191, and so on), are the names by which you and VM/370 identify
the disk. &Each device in your virtual machine has an address which may
or may not correspond to the actual location of the device on the VM/370
systen.

The third field specifies the device type of your virtual disk. The
fourth and fifth fields specify the starting real cylinder at which your
virtual disk logically begins and the number of cylinders allocated to
your virtual disk, respectively. The sixth field is the label of the
real disk on which the virtual disk is defined and the seventh field is
a letter specifying the read/write mode of the disk; "R" indicates that
the disk is a read-only disk, and "W" indicates that you have read/write
privileges. The MDISK control statement of the Directory Service
Program is described in the VM/370: Operator's Guide.

DEFINING TEMPORARY VIRTUAL DISKS

Using the CP DEFPINE command, you can attach a temporary disk to your
virtual machine for the duration of a terminal session. The following
command allocates a 10-cylinder temporary disk from a 3330 device and
assigns it a virtual address of 291:

cp define t3330 as 291 cyl 10
When you define a minidisk, you can choose any valid address that is not
already assigned to a device in your virtual machine. Valid addresses

for minidisks range from 001 through 5FF, for a virtual machine in basic
control mode.

FORMATTING VIRTUAL DISKS

Before you can use any new virtual disk, you must format it. This
applies to new disks that have been assigned to you and to temporary
disks that you have allocated with the CP DEFINE command. When you
issue the FORMAT command you must use the virtual address you have
defined for the disk and assign a CMS mode letter, for example:

format 291 c
CMS then prompts you with the following message:

DMSFOR603R FORMAT WILL ERASE ALL FILES ON DISK 'C(291)°'. DO YOU
WISH TO CONTINUE? (YES|NO):

You respond:
yes

CMS then asks you to assign a label for the disk, which may be anything
you choose. Labels can have a maximum of 6 characters. When the

DMSFOR605R ENTER DISK LABEL:

message is issued, you respond by supplying a disk label. For example,
if this is a temporary disk, you might enter

scrtch

22 IBM VM/370: CMS User's Guide

CMS then erases all the files on that disk, if any existed, dand formats
the disk for your use. When you enter the label, CMS responds by
telling you:

FORMATTING DISK ‘'C!
'10' CYLINDERS FORMATTED ON 'C(291)°'.
R; T=0.15/1.60 11:26:03

The FORMAT command should only be used to format CMS disks, that is,
disks you are going to use to contain CMS files. If you want to format
disks for 0S, DOS, or VSAM applications, the disks should be formatted
using the IBCDASDI progranm.

Sharing Virtual Disks: Linking

Since only one user can own a virtual disk, and there are many occasions
that require users to share data or programs, VM/370 allows you to share
virtual disks, on either a permanent or temporary basis, by "linking."

Permanent links can be established for you in your VM/370 directory
entry. These disks are then a part of your virtual machine
configuration every time you log on.

You can also have another wuser's disk temporarily added to your
configuration by using the CP LINK command. For example, if you have a
program that uses data that resides on a disk identified in userid
DATA's configuration as a 194, and you know that the password assigned
to this disk is 60, you could issue the command

cp link to data 194 as 198 r pass= go

DATA's 194 disk is then added to your virtual machine confiquration at
virtual address 198.

The "R" in the command line indicates the access mode; in this case,
it tells CP that you wish only to read files from this disk. VM/370
will not allow you to write on it. If you +try to issue this command
when someone is logged on to the userid DATA, you will not be able to
establish the link. If you want to 1link to DATA in any event, you can
reissue the LINK command using the access mode RR:

cp link data 194 198 rr go

The keywords TO, AS, and PASS= are optional; you do not have to specify
then.

You can also use the CP LINK command to link to your own disks. For
example, if you log on and discover that another user has access to one
of your disks, you may be given read-only access, even if it is a
read/write disk. You can request the other user to detach your disk
from his virtual machine, and after he has done so, you can establish
the link:

cp link * 191 191

When you link to your own disks, you can specify the userid as * and you
do not need to specify the access mode or a password.

Section 1. What it Means to Have a CMS Virtual Machine 23

You can find more information about the CP LINK command and CP access
modes in VM/370: CP command Reference for General Users.

Identifying Your Disk to CMS: Accessing

LINK and DEFINE are CP commands: they tell CP to add DASD devices to
your virtual machine configuration. CMS mnust also know about these
disks, and you must use the ACCESS command to establish a filemode
letter for them:

access 194 b

CMS uses filemode letters to manage your files during a terminal
session. By using the ACCESS command you can control:

e Whether you can write on a disk or only read from it (its read/write
status) .

e The library search order for programs executing in your virtual
machine.

e Which disks are to contain the new files that you create.

If you want to know which disks you currently have access to, issue
the command

query search

you might see the following display:

PER191 191 A R/W
DAT194 198 B R/0
CMS190 190 s R /0
CMS19E 19E Y R/0

The first column indicates the label on the disk (assigned when the disk
is formatted), and the second column shows the virtual address assigned
to it.

The third column contains the filemode letter. Valid filemode letters
are A, B, C, D, E, P, G, S, Y, and Z.

The fourth column indicates the read/write status of the disk. The
190 and 19E disks in this example are read-only disks that contain the
CMS nucleus and disk-resident commands for the CMS systenm.

For the most part you will probably use your 191 disk, that is, your
A-disk.

RELEASING VIRTUAL DISKS

When you no longer need a disk during a terminal session, or if you want
to assign a currently active filemode letter to another disk, use the
CMS command RELEASE:

release c

Then, you can issue the ACCESS command to assign the filemode letter C
to another disk.

24 IBM VM/370: CMS User's Guide

When you no longer need disks in your virtual machine configuration,
use the CP command DETACH to disconnect them from your virtual machine:

cp detach 194
cp detach 291

If you are going to release and detach the disk at the same time, you
can use the DET option of the RELEASE command:

release 194 (det

For more information on contreolling disks in CMS, see "Section 4. The
CMS File System."

Section 1. What it Means to Have a CMS Virtual Machine 25

Section 2. VM/370 Environments and Mode Switching

When you are using VM/370, 7your virtual machine can be in one of two
possible "environments": the CP, or control program environment, or the
virtual machine environment, which may be CMS. The CMS environment has
several subenvironments, sometimes called "modes." Each environment or
subenvironment accepts particular commands or subcommands, and each
environment has its own entry and exit paths, responses and error
messages. If you have a good understanding - of how the VM/370
environments are related, you can learn to change environments quickly
and use your virtual machine efficiently.

This section introduces the CP and CMS environments that you use and
describes:

e Entry and exit paths
e Command subsets that are valid as input

Figure 1, at the end of this section, summarizes the VM/370 command
environments and lists the commands and terminal paths that allow you to
go from one environment to another.

With the exception of input mode in the edit environment, you can
always determine which environment your virtual machine is in Dby
pressing the Return or Enter key on a null 1line. The responses you
receive, and the environments they indicate, are:

Response Environment
CPp cp

CMS CMS

CMS (DOS ON) CMS/DOS
EDIT: Edit

CMS SUBSET CMS Subset
DEBUG Debug

The CP Environment

When you 1log on to VM/370, your virtual machine is in the CP
environment. In this environment, you can enter any CP command that is
valid for your privilege class. This publication assumes that you are a
general, or class G, user. You can find information about the commands
that you can use in the VM/370: CP cCommand Reference for General Users.

Only CP commands are valid terminal input in the CP environment. You
can, however, preface a CP command 1line with the characters "“CP" or
w#Ccp", followed by one or more blanks, although it is not necessary.
These functions are described under "The CMS Environment."

You can enter CP commands from other VM/370 environments. There may
be times during your terminal session when you want to enter the CP
environment to issue one or more CP commands. You can do this from any
other environment by doing either of two things:

1. Issue the command

#cp

Section 2. VM/370 Environments and Mode Switching 27

2. Use your terminal's Attention key (or equivalent). On a 2741
terminal, you must normally press the Attention key twice, quickly,
to enter the CP environment.

The following message indicates that your virtual machine is in the CP
environment:

Ccp
After entering whatever CP commands you need to use, you return your
virtual machine to the environment or mode that it came from by using
the CP command
cp begin

which, literally, begins execution of your virtual machine.

The CMS Environment

You enter the CMS environment from CP by issuing the IPL command, which
loads CMS into your virtual storage area. If you are planning to use
CMS for your entire terminal session, you should not have to IPL again
unless a program failure forces you into the CP environment.

When you issue the IPL command, 7you can specify either the named
system CMS at your installation or you can load CMS by specifying the

virtual address of the disk on which the CMS system resides. For
exanmple,

cp ipl cms
cp ipl 190
When your virtual machine is in the CMS environment, you can issue
any CMS command and any of the CP commands that are valid for your user
privilege class. You can also execute many of your own OS or DOS
programs; the ways you can execute programs are discussed in "Section 8.
Developing O0S Programs Under CMS" and “Section 9. Developing DOS
Programs Under CMS."
You can enter CP commands from CMS in any of the following ways:
¢« Using the implied CP function of CMS (See Note.)
¢ @ith the CP command
o With the #CP function

Note: For the most part, you may enter any CP command directly from the

CMS environment. This implied CP function is controlled by an operand
of the CMS SET command, IMPCP. You can determine whether the implied CP
function is in effect for your virtual machine Lty entering the command
query impcp
If the response is
IMPCP = OFF

you can change it, by entering

set impcp on

28 IBM VM/370: CMS User's Guide

When the implied CP function is set off, you must use either the CP
command or the #CP function to enter CP commands from the CMS
environment. CP commands that you execute in EXEC procedures must
always be prefaced by the CP command, regardless of the implied CP
setting. An example of using the CP command is:

cp close punch

When you issue CP commands from the CMS environment either implicitly
or with the CP command, you receive, in addition to the CP response (if
any), the CMS Ready message. If you use the #CP function, discussed
next, you do not receive the Ready message.

You can preface any CP command 1line with the characters "“#Cp",
followed by one or more blanks. When you enter a CP command this way,
the command is processed by CP immediately; it is as if your virtual
machine were actually in the CP environment.

EDIT, INPUT, AND CMS SUBSET

The CMS Editor is a VM/370 facility that allows you to create and modify
data files that reside on CMS disks. The editor environment, more
commonly called the edit environment, is entered when you issue the CMS
command EDIT, specifying the identification of a data file you want to
create or modify.

edit myfile assemble
is an example of how you would enter the edit environment to either
create a file called MYFILE ASSEMBLE or to make changes to a disk file
that already exists under that name.

When you enter the edit environment your virtual machine is
automatically in edit mode, where you can only issue EDIT subcommands or
CP commands prefaced by "#CP."™ EDIT subcommands tell the editor what
you wish to do with the data you have accessed. After you enter the
EDIT subcommand

input

data lines that you enter are considered input to the file. To return
to edit mode, you must enter a null line.

If you issue the EDIT subcommand
cms
the editor responds
CMS SUBSET
and your virtual machine is in CMS subset mode, where you can issue any

valid CMS subset command, that is, a CMS command that is allowed in CHMS
subset mode. These include:

ACCESS LISTFILE RT

Ccp PRINT SET
DISK PUNCH STATE
ERASE QUERY STATEW
EXEC READCARD TYPE
HT

Section 2. VM/370 Environments and Mode Switching 29

You can also issue CP commands. To return to edit mode, you use the
special CMS subset command, RETURN. If vyou enter the Immediate command
HX, your editing session is terminated altnormally and your virtual
machine is returned to the CMS environment.

When you are finished with an edit session, you return to the CMS
environment by issuing the FILE subcommand, which indicates that all
modifications or data insertions that you have made should be written
onto a CMS disk, or by issuing the subcommand QUIT, which tells the
editor not to save any modifications or insertions made since the last
time the file was written.

More detailed information about EDIT subcommands and how to use the
CMs Editor is contained in this publication in “Section 5. The CHMS
Bditor" and in the VM/370: CMS Command and Macro Reference.

DEBUG

TMS DEBUG 1is a special CMS facility that provides subcommands to help
you debug programs at your terminal. Your virtual machine enters the
debug environment when you issue the CMS command

debug

You may want to enter this command after you have loaded a program into
storage and before you begin executing it. At this time you can set
“breakpoints," or address stops, where you wish to halt your program's
execution so that you can examine and change the contents of general
registers and storage areas. When these breakpoints are encountered,
your virtual machine is placed in the debug environment. You can also
enter the debug environment by issuing the CP EXTERNAL command, which
causes an external interrupt to your virtual machine.

Valid DEBUG subcommands that you can enter in this environment are:

BREAK GO RETURN
CAW GPR SET
Csw HX STORE
DEFINE ORIGIN X

DUMP PSW

You can also use the #CP function in the debug environment to enter CP
commands.

You leave the debug environment in any of the following ways:

o If the program you are running completes execution, you are returned
to the CMS environment.

¢ If your virtual machine entered the debug environment after a
breakpoint was encountered, it returns to CHS when you issue the
DEBUG subcommand

hx
To continue the execution of your program, you use the DEBUG
subcommand
go

30 IBM VM/370: CMS User's Guide

e If your virtual machine is in the debug environment and is not
executing a program, the DEBUG subcommand

return

returns it to the CMS environment.

CMS/DOS

If you are a DOS/VS user, the CMS/DOS environment provides you with all
the CMS interactive functions and facilities, as well as special, CMS/DOS
commands which simulate DOS functionms. The CMS/DOS environment becomes
active when you issue the command

set dos on

When your virtual machine is in the CMS/DOS environment you can issue
any command line that would be wvalid in the CMS environment, including
the facilities of EDIT, DEBUG, and EXEC, but excluding CMS commands or
program modules that load and/or execute programs that use 0S macros or
functions.

The following commands are provided in CMS/DOS to test and develop
DOS programs, and to provide access to DOS/VS libraries:

ASSGN DS ERV OPTION
DLBL ESERV PSERV
DOSLIB FETCH RSERV
DOSLKED FCOBOL SSERV
DOSPLI LISTIO

Your virtual machine 1leaves the CMS/DOS environment when you issue the
command

set dos off

If you reload CMS (with an IPL command) during a terminal session, you
must also reissue the SET DOS ON command.

Interrupting Program Execution

When you are executing a program under CMS or executing a CMS conmand,
your virtual machine is not available for you to enter commands. There
are, however, ways in which you can interrupt a program and halt its
execution, either temporarily, in which case you can resume its
execution, or permanently, in which case your virtual machine returns to
the CMS environment. In both cases, you interrupt execution by creating
an "attention interrupt," which may take two foras:

e An attention interrupt to your virtual machine operating system
e An attention interrupt to the control progranm

These situations result in what are known as virtual machine (VM) or
control program (CP) "reads" being presented to your virtual comsole.
On a typewriter terminal, the keyboard unlocks when a read occurs.

Whether you have to press the Attention key once or twice depends on

the terminal mode setting in effect for your virtual machine. This
setting is controlled by the CP TERMINAL command:

Section 2. VM/370 Environments and Mode Switching 31

cp terminal mode vm

The setting VM is the default for virtual machines; you do not need to
specify it. The VM setting indicates that one depression of the
Attention key sends an interrupt to your virtual machine, and that two
depressions results in an interrupt to the control program (CP).

The CP setting for terminal mode, which is the default for the systenm
operator, indicates that one depression of the Attention key results in
an interrupt to the control program (CP). If you are using your virtual
machine to run an operating system other than CMS, you might wish to use
this setting, also. Issue the command:

cp terminal mode cp

VIRTUAL MACHINE INTERRUPTS

While a command or program is executing, if you press the Attention key
once on a 2741 (or the Enter key on a 3270), you have created a virtual
machine interrupt. The program halts execution, your terminal will
accept an input line, and you may:

» Terminate the execution of the program, by issuing an Immediate
command to halt execution:

hx
The HX command causes the program to abnormally terminate (abend).

o Enter a CMS command. The command is stacked in a console buffer and
is processed by CMS when your program is finished executing and the
next virtual ‘machine read occurs. For example:

print abc listing

After you enter this line, the program resumes execution.

o If the program is directing output to your terminal and you wish only
to halt the terminal display, use the Immediate command:

ht

The program resumes execution. You can, if you want, cause another
interrupt and request that typing be resumed by entering the RT
(resume typing) command:

rt

o Enter a null line; your program continues execution. The null line is
stacked in the console stack and read by CMS as a stacked command
line.

HX, HT, and RT are three of the CMS Inmediate commands. They are
“immediate" because they are executed as soon as they are entered.
Unlike other commands, they are not stacked in the console buffer. You
can only enter an Immediate command following an attention interrupt.

32 IBM VM/370: CMS User's Guide

CONTROL PROGRAM INTERRUPTS

You can interrupt a program and enter the CP environment directly by
pressing the Attention key twice quickly, on a 2741, or pressing the PA1
key on a 3270. Then, you can enter any CP command. To resume the
program's execution, issue the CP command:

cp begin

If your terminal is operating with the terminal mode set to CP, pressing
the Attention key once places your virtual machine in the CP
environment.

ADDRESS STOPS AND BREAKPOINTS

A program may also be interrupted by an instruction address stop, which
you specifically set by the CP command ADSTOP. For example, if you
issue the command

cp adstop 201ea

An address stop is set at virtual storage location X'201EA'. When your
program reaches this address during its execution, it is interrupted and
your virtual machine is placed in the CP environment, where you can
issue any CP command, including another ADSTOP command, before resuming
your program's execution with the CP command BEGIN.

Breakpoints, . similar to address stops, are set using the DEBUG
subcommand BREAK, which you 3issue in the debug environment before
executing a program. For example, if you issue:

break 1 201ae

Your program's execution is interrupted at this address and your virtual
machine is placed in the debug environment. You can them enter any
DEBUG subcommand. To resume program execution, use the DEBUG subcommand
GO. If you want to halt execution of the program entirely, use the
DEBUG subcommand HX, which returns your virtual machine to the CMS
environment. You can find more information alout setting address stops
and breakpoints in "sSection 11. How VM/370 Can Help You Debug Your
Programs."

Section 2. VM/370 Environments and Mode Switching 33

Notes:

Any “Class Any”
CP Command
LOGON
Y
L CP (Control Program)

Environment'

BEGIN®

EXTERNAL

Any CP Command’ 1
IPL CMS

CMS/DOS Environment

Any CP Command

Any CMS Command
Any CMS/DOS Command

Execute any DOS Program
#CP Command Line

Program Execution

HX or (ABEND)
{Address Stop)

ICMS (Conversational Monito
System) Environment

Any CMS Command

Any CP Command

EDIT filename filetype = |

SET DOS ON

Execute any OS or CMS
Program

DEBUG

#CP Command Line

EDIT Environment

Any EDIT Subcommand
FILE or QUIT
Any EDIT Macro

CcmS
INPUT
#CP Command Line

b\

DEBUG Environment

INPUT MODE

Any Input Line

Carrier return on a
nuil line

#CP Command Line

CMS Subset

Any DEBUG Subcommand
RETURN or HX
GO

(Breakpoint)

#CP Command Line

Any CMS Subset Command
Any CP Command

[}

! The CP environment may be entered from any other environment either by using
your terminal’s Attention key or equivalent, or by entering the command #CP.

¢ Any CP command is any CP command that is valid for your user privilege class.
Any time that a CP command can be entered, it may be prefaced with #CP.
}The BEG!N command returns your virtual machine to the environment it was in
when CP was entered:

*If you were in edit or input mode, the current line pointer remains unchanged.

*1f you were executing a program, execution resumes at the instruction address
indicated in the PSW.

Figure 1. VM/370 Environments and Mode Switching

34

IBM VM/370:

CMS User's Guide

RETURN
| HX
#CP Command L.ine

Section 3. What You Can Do With VM/370-CMS Commands

This section provides an overview of the CMS and CP command languages,
and describes the various commands within functional areas, with
examples. The commands are not presented in their entirety, nor is a
complete selection of commands represented.

When you finish reading this section you should have an understanding
for the kinds of commands available to you, so that when you need to
perform a particular task using CMS you may have an idea of whether it
can be done, and know what command to reference for details. For
complete 1lists of the CP and CMS commands available in the VM/370
system, see "Appendix A: Summary of CMS Commands" and "Appendix B:
Summary of CP Commands."

Command Defaults

Many of the characteristics of your CMS virtual machine are already
established when you log on, but there are commands available so you can
change them. In the case of many CMS commands, there are implied values
for operands, so that when you enter a command line without certain
operands, values are assumed for :thenm. In both of these instances, the
values set or implied are considered default values. As you learn CP
and CMS commands, you also should become familiar with the default
values or settings for each.

Commands To Control Terminal Communications

Using VM/370, 7you control .your virtual machine directly £frcm your
terminal. VM/370 provides a complement of commands for terminal
communications.

ESTABLISHING AND TERMINATING COMMUNICATIONS WITH VM/370

To initiate your communication with VM/370, use the CP LOGON command:

cp logon sam
Optionally, you may enter your password on the same line:

cp logon sam 123456
When you are sure that your communication line is all right and you have
difficulty logging on (for example, someone else has logged on under
your userid), you can use the CP MESSAGE command:

cp message sam this is sam...pls log off

Another way to access the VM/370 system is to use the CP command
DIAL:

cp dial tsosys

Section 3. What You Can Do With VM/370-CMS Commands 35

In this example, TSOSYS is the userid of a virtual machine running a TSO
systemn. After this DIAL command is successful, you can use your
terminal as if you were actually connected to a TSO system, and you can
begin TSO logon procedures.

To end your terminal session, use the CP command LOGOFF:
cp logoff

If you have used a switched (or dial-up) communication path to the
¥M/370 computer and you want the line to remain available, you can
enter: ‘

cp logoff hold

At times, you might be running a long program under one userid and wish
to use your terminal for some other work. Then, you can disconnect your
terminal:

cp disconn
cp disconn hold

Your virtual machine continues to run, and is logged off the system when
your program has finished executing. If you want to regain terminal
control of your virtual machine after disconnecting, log on as you would
to initiate your terminal session. Your virtual machine is placed in
the CP environment, and to resume its execution, you use the CP command
BEGIN.

You should not disconnect your virtual machine if a program regquires
an operator response, since the console read request cannot be
satisfied.

CONTROLLING WHAT YOU RECEIVE AT YOUR TERMINAL

During the course of a terminal session, you can receive many kinds of
messages from VM/370, from the system operator, from other users, or
from your own programs. You can decide whether or not you want these
messages to actually reach you. For example, if you use the command

cp set msg off
No one will be able to send messages to you with the CP MESSAGE command;
if another virtual machine user tries to send you a message, he receives
a message

userid NOT RECEIVING, MSG OFF
Similarly, you can use

cp set wng off
to prevent warning messages (which usually come from the systen
operator) from coming to you. You would protabkly do this, however, only
in cases where you were typing some output at your terminal and did not
want the copy ruined.

VM/370 issues error messages whenever you issue a command incorrectly

or if a command or program fails. These messages have a long form,

36 IBM VM/370: CMS User's Guide

consisting of the error message code and nﬁmber, followed by text
describing the error. If you wish to receive only the text portion of
messages wWith severity codes I, E, and W (for Informational, Error, and
Warning, respectively), you can issue the command:
cp set emsg text

If you want to receive only the message code and number, (from which you
can locate an explanation of the error in VM/370: System Messages) you
specify

cp set emsg code
You can also cancel error messages completely:

cp set emsg off

To restore the EMSG setting to its default, which is the message code
and text, enter:

cp set emsg on
Ssome CP commands issue informational messages telling you that CP has

performed a particular function. You can prevent the reception of these
messages with the command

cp set imsg off
or restore the default by issuing

cp set imsg on
The setting of EMSG applies to CMS commands as well as to CP commands.

You can also control the format of the CMS Ready message. If you
enter

set rdymsg smsg

you receive only the ¥R;" or shortened form of the Ready message after
the completion of CMS commands. If you are not receiving error messages
(as described above) and an error occurs, the return code from the
command still appears in parentheses following the "RY,

An additional feature exists for CHMS. If you have a typevwriter
terminal with a two-color ribbon, you can specify

set redtype on
so that CMS error messages are typed in red.

Some commands or messages result in displays of lines that are very
long. If you want to limit the width of lines that are received at your
terminal (for example, if you are wusing terminal paper that is only
eight inches wide), you can specify:

cp terminal linesize 80

so that all lines received at your terminal are formatted to fit within
an 80-character display.

You can also control two special characters in VM/370. One is the
exclamation point (!) that types when the Attention key is pressed. If
you do not want this character to type when you press the Attention key,
use the command:

Section 3. What You Can Do With VM/370-CMS Commands 37

cp terminal attn off

CMS allows you to specify a "blip" character: this character is typed
or displayed whenever two seconds of CPU time are used. If you enter

set blip *

then, when a program is executing, this character types for every two
seconds of CPU time. You can cancel the function:

set blip off
or set it to nonprintable characters:
set blip on

When this command has been entered on a typewriter terminal, the
selectric type ball +tilts and rotates whenever a blip character is
expected.

COMMANDS TO CONTROL HOW VM/370 PROCESSES INPUT LINES

You can manipulate VM/370's logical line editing function to suit your
own needs. In addition to using the CP TERMINAL command to change the
default logical line editing symbols, you can issue

cp set linedit off

so that none of the symbols are recognized by VM/370 when it interprets
your input lines.

When you are in the CMS environment, there are a number of commands
that you can use to control how CMS validates a command line. The SET
command functions IMPCP (implied CP) and IMPEX (implied EXEC) control
the recognition of CP commands and CMS EXEC procedures. For example, if
you issue

set impcp off # set impex off

then, when you enter CP commands in CMS or try to execute EXEC
procedures, you must preface the name of the command or procedure with
CP (or #CP), or EXEC, respectively. If implied EXEC is set to off, you
cannot use edit macros.

By using the SYNONYM and the SET ABBREV commands, you can control
what command names, synonyms, or truncations are valid in CH#S. For
example, you could set up a file named MYSYN SYNONYM which contains the
following records:

PRINT PRT 1
RELEASE LETGOOF 5
ACCESS GET 1
DOSLKED LNKEDT 3

The first column specifies an existing CMS command, module, or EXEC
name; the second column specifies the alternate name, or synonym, you
want to use; and the third column is a count field that indicates the
minimum number of characters of the synonym that can be used to truncate
the name. Using this file, after you enter the command

synonym mysyn

38 IBM VM/370: CMS User's Guide

you can use PRT, LETGOOF, GET, and LNKEDT in place of the corresponding
CMS command names. Also, if the ABBREV function is in effect, (it is
the default; you can make sure it is in effect by issuing the command
SET ABBREV ON), you can truncate any of your synonyms to the minimum
number of characters specified in the count field of the record (that
is, you could enter "p" for PRINT, "letgo" for RELEASE, and so on).

You can set up EXEC files with the same names as CMS commands, that
may or may not perform the same function as the CMS names they
duplicate. For example, if every time you used the GLOBAL command you
used the same operands, you could have an EXEC file, named GLOBAL, that
contained a single record: i

global maclib cmslib osmacro
Then, every time you entered the command name
global
the command GLOBAL MACLIB CMSLIB OSMACRO would execute.

As another example, suppose :you had an EXEC file named 'T', that
contained the following records:

&§CONTROL OFF
CP QUERY TIME

Then,. whenever you entered
t

you would receive the CP time-of-day message, and you could no longer
use the truncation "T" for the CMS command TYPE. In order to see the
contents of a CMS file displayed at your terminal you would have to
enter at least "TY" as a truncation.

CONTROLLING KEYBOARD-DEPENDENT COMMUNICATIONS

You are dependent on your terminal for communication with VM/370: when
your virtual machine is waiting for a read either from the control
program or from your virtual machine operating system, you can not
receive messages until you press the Return key to enter a command or a
null line. If you are in a situation where you must wait for a message
before continuing your work, for example, if you are waiting for a tape
device to be attached to your virtual machine, you can use the CP
comnand SLEEP to lock your keyboard:

cp sleep

You must then press the Attention key to get out of sleep and unlock the
keyboard so you can enter a command.

If your virtual machine is in the CP environment when you issue the
SLEEP command, or if you issue the SLEEP command from the CHMS
environment using the #CP function, your virtual machine is in the CP
environment after you press the Attention key. If your virtual machine
is in the CMS environment when you enter the SLEEP command (or if you
enter CP SLEEP), your virtual machine is in the CMS environment when you
press the Attention key once.

You can control the effect of pressing the Attention key or your
terminal with the CP TERMINAL command. If you specify:

Section 3. What You Can Do With VM/370-CMS Commands 39

cp terminal mode cp

then, whenever you press the Attention key, you are imn the CP
environment.

If you use the default terminal mode setting, which is VM, and then
you press the Attention key once, you cause a read to your virtual
machine; if you press the Attention key twice you cause a CP read, and
gou are in the CP environment.

The effect of pressing the Attention key is also important when you
are executing a program. At times, you may wish to enter some CP
commands while your program executes, but you do not want to interrupt
the execution of the progranm. If, before you begin your program you
issue the command

cp set run on

and then use the Attention key to get to the CP environment while your
program executes, the program continues executing while you communicate
with CP. The default setting for the RUN operand of the SET command is
off; usually, when you press the Attention key (twice) during progranm
execution, your program is interrupted.

SPECIAL CHARACTER SETIS: If you are using a programming language or
entering data that requires you to use characters that are not on your
keyboard, you can select some characters that you do not use very often
and establish a translate table with the SET command. For example, if
your terminal does not have the special characters [and] (which have
the hexadecimal values AD and BD, respectively), you could issue the

commands

set input % ad
set input $ bd

Then, when 7you are entering data 1lines at your terminal, whenever you
enter the characters "%" or "$", they are translated and written into
your file as "[" and "]". When you display these 1lines, the character
positions occupied by the special characters appear to be blanks,
because they are not available on your keyboard. If you want these
special characters to appear on your terminal in symbolic form, you
should issue the commands

set output ad %
set output bd $

so that when you are displaying lines that contain these characters,
they will appear translated as % and $ on your terminal. If you are
going to use the input and output functions together, you must set the
output character first; if you set the input character first, then you
are unable to set the output function.

If you are an APL user and have the special APL type font or the APL
3270 feature and keyboard, you can tell VM/370 to use APL translation
tables with the command

cp terminal apl on

Commands To Create, Modify. and Move Data Files and Programs

The CMS command language provides you with many different ways of
manipulating files. A file, in CMS, is any collection of data; it is

40 IBM VM/370: CMS User's Guide

most often a disk file, but it may also be contained on cards or tape,
or it may be a printed or punched output file.

COMMANDS THAT CREATE FILES

You create files in CMS by several methods; either specifically or by
default. The EDIT command invokes the CMS Editor to allow you to create
a file directly at your terminal. You must specify a file identifier
when you are creating a new file:

edit mother goose

In this example, the file has an identifier, or fileid, of MOTHER
GOOSE. The EDIT subcommand INPUT allows you to begin inserting lines of
data or source code into this file. When you issue the subcommands FILE
or SAVE, the lines that you have entered are written into a CMS disk
file.

Files are created, and sometimes named, by default, with the
following types of commands:

o Commands that invoke programming language processors or compilers.
For example, if you issue the command

assemble myfile

the assembler assembles source statements from an existing CMS file
named MYFILE ASSEMBLE and produces an output file containing object
code, as well as a listing. The files that are created are named:

MYFILE TEXT
MYFILE LISTING

o Commands that load CMS files onto a disk from cards or tapes. These
commands are READCARD, TAPE LOAD, and DISK LOAD.

e The LISTFILE and LISTIO commands with the EXEC option create files
named CMS EXEC and S$LISTIO EXEC which you can execute as EXEC
procedures.

e The TAPPDS and TAPEMAC commands create CMS disk files from O0S data
sets on tape. If the data set 1is a partitioned data set, the TAPPDS
command creates individual CMS files from each of the members; the
TAPEMAC command creates a CMS macro library, called a MACLIB, from an
0S macro library.

¢ The MOVEFILE and FILEDEF commands, used together, can copy 0S or DOS
data sets or files into CMS files; they can also copy files fronm
cards or tapes.

e CMS/DOS commands SSERV, ESERV, RSERV, and PSERV copy DOS files from
source statement, relocatable, and procedure 1libraries into CMS
files.

¢ Some CMS commands produce maps, or 1lists of files, data sets, or
program entry points. For example, if you issue the command

tape scan (disk
A CMS disk file named TAPE MAP is created that contains a list of the

CMS files that exist on a tape attached to your virtual machine at
virtual address 181.

Section 3. What You Can Do With VM/370-CMS Commands 41

Some commands create new files from files that already exist on your
virtual disks. The creation may involve a simple copy operation, or it
may be a combining of many files of one type into a larger file of the
same or a different type:

o The COPYFILE command, in its simplest form, copies a file from one
virtual disk to another:

copyfile yourprog assemble b myprog assemble a

» The MACLIB and TXTLIB commands create libraries from MACRO or COPY
files, or from TEXT (object) files.

o The SORT command rearranges (in alphameric sequence) the records in a
file and creates a new file to contain the result. You have to
specify the name of the new file:

sort nonseq recs a seq recs a

o The GENMOD command creates, from object modules that you have loaded
into your virtual storage area, nonrelocatable modules. For exanmple,
the commands

load test
genmod payroll

create a file named PAYROLL MODULE, which you can then execute as a
user-written CMS command.

» The DOSLKED command creates or adds members to DOSLIBs, which are
libraries containing link-edited CMS/DOS program phases.

e The UPDATE command creates an updated source file and special update
files when you use it to apply updates to your source programs.

COMMANDS THAT MODIFY DISK FILES
You can use the CMS Editor to modify existing files on your virtual
disks. You issue the EDIT command, giving the file identifier:

edit old file

CMS Editor subcommands allow you to make minor specific changes or
global changes, which can affect many lines in a file at one tinme.

The MACLIB and TXTLIB commands also allow you to modify CMS macro and
text 1libraries. You can add, delete, or replace members in these
libraries using these commands.

The COPYFILE command has some options that allow you to change a file
without creating a new output file. For example, if you enter the
command

copyfile my file a (lowcase

then all of the uppercase characters in the file MY FILE are translated
to lowercase.

You can change the file identifier of a file wusing the RENAME
command:

42 IBM VM/370: CMS User's Guide

rename test file a1l good file at
The ERASE command deletes files from your virtual disks:
erase temporary file b1

For additional examples of CMS file system commands, see "Appendix D:
Sample Terminal Sessions.®

COMMANDS TO MCVE FILES

You can use CMS comnmands to transfer a data file from one device or
medium to another device of the same or of a different type. The types
of movement, and the commands to use, are described briefly here and in
detail in "Section 7. Using Real Printers, Punches, Readers, and
Tapes."

If you need to transfer files between virtual machines, you can use
the PUNCH or DISK DUMP commands to punch virtual card image records.
These are then placed in the virtual card reader of the receiving
virtual machine.

Before you use either of these commands, you must indicate the cutput
disposition of the files. You do this with the CP SPOOL command:

cp spool 004 to mickey
Then, you can use the PUNCH command to punch virtual card images:

punch acct records
The file ACCNT RECORDS is spooled to the userid MICKEY's virtual card
reader. If the CMS file you are transferring does not have fixed-
length, 80-character (card image) records, you can use the command

disk dump acct records

The CMS TAPE command allows you to dump CMS files onto tape, or to
restore previously dumped files:

tape dump archive file
tape load archive file

VM/ 370 also provides a special utility program, DASD Dump Restore,
that allows you to dump the entire contents of your virtual disk onto a
‘tape and then 1later restore it to a disk. You might use this progran,

invoked by the DDR command in CMS, to back up your data files before
using them to test a new program.

COMMANDS TO PRINT FILES AND PUNCH CARDS

The commands that you use most often to print and punch CMS files are
the commands PRINT and PUNCH. For example,

print myprog listing
prints the contents of the LISTING file on the system printer, and

punch myprog assemble

Section 3. What You Can Do With VM/370-CMS Commands 43

punches the assembler language source statement file onto cards. You
can also punch members of MACLIBs and TXTLIBs:

punch cmslib maclib (member £fscb

Some CMS commands have a PRINT option, so that instead of having some
kinds of output displayed at your terminal or placed in a disk file, you
can request to have it printed on the real system printer. For example,
if you want a list of the contents of a macro library to print, you
could issue the command

maclib map mylib (print

You can see the contents of a file displayed at your ‘terminal by
asing the TYPE command:

type week3 report

You can specify, on the TYPE command, that you want to see only some
specific records in this file:

type week3 report a 1 20

Commands To Develop and Test OS and CMS Programs

Use CMS to prepare programs: you can create them with the CHMS Editor, or
write them onto 7your CMS disks using any of the methods discussed
above. You can also assemble or compile source programs directly from
cards, tapes, or 0S5 data sets. If your source program is in a CMS disk
file, then during the development process you can use the editor to make
corrections and updates.

To compile your programs, use the assembler or any of the language
processors available at your installation. If your program usesS macros
that are contained in either system or private program libraries, you
must make these libraries known to CMS by using the GLOBAL command:

global maclib cmslib asmlib

In this example, you are using two 1libraries: the CMS macro library,
CMSLIB MACLIB, and a private library, named ASMLIB MACLIB.

The output from the compilers, in relocatakle object form, is stored
on a CMS disk as a file with the filetype of TEXT. To load TEXT files
into virtual storage to execute them, use the LOAD command:

load myprog

The LOAD command performs the linkage editor function in CHMs. If
MYPROG contains references to external routines, and these routines are
the names of CMS TEXT files, those TEXT files are automatically included
in the load. If you receive a message telling you that there is an
undefined name (which might happen if you have a CSECT name or entry
point that is not the same as the name of the TEXT file that contains
it), you can then use the INCLUDE command to load this TEXT file:

include scanrtn

When you have loaded the object modules into storage, you can begin
program execution with the START command:

start

by IBM VM/370: CMS User's Guide

If you want to begin execution at a specified entry point, enter
start scani

where SCAN1 is the name of a control section, entry point, or
procedure.

If you are testing a program that either reads or writes files or
data sets using 0S macros, you must use the FILEDEF command to supply a
file definition to correspond to the ddname you specify in your progran.
The command

filedef indd reader

indicates that the input file is to be read fronm your virtual card
reader. A disk file might be defined:

filedef outdd disk out file a1

The FILEDEF command, in CMS, performs the same function as a data
definition (DD) card in oOS.

The commands to load and execute O0S programs are discussed in
®Section 8. Developing 0S Programs Under CMS."

The RUN command, which is actually an EXEC procedure, combines many
of these commands for you, so that if you want to compile, 1load, and
execute a single source file, or load and execute a TEXT or MODULE file,
you can use the RUN command instead of issuing a series of commands. See
the discussion of the RUN command in ¥M/370: CMS Command and Macro

o e i o i o e ——

Commands To Develop and Test DOS Programs

CMS simulates many functions of the Disk Operating System (DOS/VS) in
the CMS/DOS environment. CMS/DOS is not a separate system, but is part
of CMS. When you enter the command

set dos on
you are in the CMS/DOS environment. If you want to use the libraries on
the DOS/VS system residence volume, you should access the disk on which
it resides and specify the mode letter on the SET DOS ON command line:

access 132 c
set dos on c

Using commands that are available only in the CMS/DOS environment,
you can assign system and programmer logical units with the ASSGN
command:

assgn sys200 reader

If the device is a disk device, you can set up a data definition with
the DLBL command:

assgn sysi100 b
dlbl infile b dsn myinput file (sys100

You can find out the current logical unit assignments and active file
definitions with the LISTIO and QUERY DLBL commands, respectively:

Section 3. What You Can Do With VM/370-CMS Commands 45

listio a
query dlbl

If you are an assembler language programmer, you can assemble a
source file with the ASSEMBLE command:

assemble myprog
A CMS file with a filetype of DOSLIB simulates a DOS core image
library; you can link-edit TEXT files or relocatable modules from a DOS
relocatable library and place the link-edited phase in a DOSLIB using
the DOSLKED command:
doslked myprog newlib

Then, use the GLOBAL command to identify the phase library and issue the
FETCH command to bring the phase into virtual storage:

global doslib newlib
fetch myprog

The START command begins program execution:
start
During program development with CMS, you can use DOS/VS system or
private libraries. You can use files on these libraries or you can copy
them into CMS files. The DSERV command displays the directories of
DOS/VS libraries. The command
dserv cd
produces a copy of the directory for the core image library. To copy
phases from relocatable libraries into CMS TEXT files, you could use the
RSERV command:
rserv oldprog
The SSERV and ESERV commands are available for you to copy files from
source statement 1libraries, or copy and de-edit macros from E

sublibraries. Also, the PSERV command copies procedures from the
procedure library.

The CMS/DOS commands are described in more detail in "Section 9.
Developing DOS Programs Under CHMS."

Commands Used in Debugging Programs

When you execute your programs under CMS, you can debug them as they
execute, by forcing execution to halt at specific instructicn addresses.
You do this by entering the debug environment before you issue the START
command. You enter the debug environment with the DEBUG command:

debug

To specify that execution be stopped at a particular virtual address,
you can use the BREAK subcommand to set a breakpoint. For example,

break 1 20ado

46 IBM VM/370: CMS User's Guide

Then, when this instruction is encountered during the execution of the
program, the debug environment is entered and you can examine registers
or specific storage locations, or print a dump of your virtual storage.
Subcommands that do these things might look like the following:

gpr 0 15
x 20c12 8
dump 20000 *

If, instead of using the CMS DEBUG subcommands, you use the CP ADSTOP
command to set address stops, for example,

cp adstop 20ad0

then, in the CP environment, you can use CP commands to do the same
things, for example

cp display g
cp display 20c12.8
cp dump 20000

Both sets of commands shown in these examples result in displays of (1)
the contents of your virtual machine's general purpose registers, (2) a
display of eight bytes of storage beginning at location X'20C12' and (3)
a dump of virtual storage from location X'20000' to the end.

You can also use the CMS SVCTRACE command and the CP TRACE commands
to see a record of interrupt activity in your virtual machine.

The DEBUG subcommands and the CMS and CP debugging facilities are
described in more detail in "Section 11. How VM/370 Can Help You Debug
Your Programs."

Commands To Request Information

All of the CP and CMS commands discussed in this section have required
some action on your part: you set your terminal characteristics,
manipulate disk files, develop, compile, and test programs, and control
your virtual machine devices and spool files. During a terminal session
you can change the status of many of your devices and virtual machine
characteristics, modify the files on your disks and create spool files.
VM/370 provides many commands to help you find out what is and what is
not currently defined in your virtual machine.

COMMANDS TO REQUEST INFORMATION ABOUT TERMINAL CHARACTERISTICS

You can f£find out the status of your terminal characteristics by using
the CP command QUERY with the TERMINAL or SET operands. If you issue the
command
cp guery terminal
you can see the settings for all of the functions controlled by the CP
TERMINAL command, including the current line size and line editing
symbols.
Similarly, the command

cp query set

Section 3. What You Can Do With VM/370-CMS Commands 47

tells you the settings for the functions controlled by the CP SET
command, such as error message display, and the MSG and WNG flags.

Por most of the functions controlled by the CMS SET command, there
are corresponding CMS QUERY command operands; to find out a particular
setting, you must specify the function in the QUERY command. For
examtle,

query input

lists the current settings in effect for input character translation.
Other functions that you can query this way are:

BLIP INPUT REDTIYPE
IMPCP CUTPUT SYNONYHM
IMPEX RDYMSG

COMMANDS TO REQUEST INFORHATIOF ABOUT DATA FILES
Use the LISTFILE command to get information about CMS files. The
information you can obtain from the LISTFILE command includes:
e The names of all the files on your A-disk:
listfile
e The names of all the files on any other accessed disk:
listfile * * b
e The names of all files that have the same filename:
listfile myprog *
e The names of all files with the same filetype:
listfile #* assemble

e The record length and format, blocksize, creation date and disk label
for a particular file:

listfile records saved a2 (label
Use the STATE command to find out whether a certain file exists:
state sales list c

If you want to know if the file is on a read/write disk, you can use the
STATEW command.

To find out what CMS libraries have been made available, you can use
the commands:

query doslib
query maclib
query txtlib
query likrary

To find out what members are contained in a particular macro or text
library use the commands:

48 IBM VM/370: CMS User's Guide

maclib map mylib (term
txtlib map proglib (term

The MODMAP command displays a load map of a MODULE file:
modmap payroll

To examine load maps created by the LOAD command, use the TYPE
command:

type load map a5
The TYPE command can also be used to display the contents of any CMS
file. To examine large files, you can use the PRINT command to spool a
copy to the high-speed printer.

To compare the contents of two files to see if they are identical,
use the COMPARE command:

compare labor stat a1l labor stat b1

Any records in these files that do not match are displayed at your
terminal.

If you have 0S or DOS disks attached to your virtual machine, you can
display a list of 0S data sets or DOS files by using the LISTDS command,
for example

listds d

displays a list of the data sets or files on the 0S or DOS disk accessed
as your D-disk.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL DISKS

Use the CP QUERY command to find out:

e What virtual disks are currently part of your configuration:
Cp query virtual dasd

o Whether a particular virtual disk address is in use:
cp query virtual 291

e What users might be linked to one of your disks:
cp query links 330

The CMS QUERY command can tell you about your accessed disks. If you
enter

query disk a
you can find out the number of files on your A-disk, the amount of space
that is being used, and its percentage of the total disk space, and the
read/vrite status. To get this information for all of your accessed
disks, issue the command:

query disk *

Section 3. What You Can Do With VM/370-CMS Commands 49

To obtain information about the extents occupied by files on 0S and DOS
disks, enter the command

listds * (extent

If you want to know the current order in which your disks are
searched for data files or programs, issue the command

query search
You could also use this command to find out what disks you have
accessed, what filemode letters you have assigned to thenm, whether they

are read/write or read-only, and whether they are CHS, 0Ss, or DOS
disks.

COMMANDS TO REQUEST INFORMATION ABOUT YOUR VIRTUAL MACHINE

If you issue the command
cp query virtual

you can find out the status of your virtual machine configuration. You
can also request specific information; for example, the cormand

cp query storage
gives you the amount of virtual storage you have available.

To find out the current spooling characteristics of your printer,
punch, or reader, issue the commands

cp query 00e
cp query 004
cp query 00c
70 see information about all three at once, use

cp query ur

For the status of spool files on any of these devices, issue the
commands

cp query printer
cp query punch
cp query reader

Using these commands, you can request the status of particular spool
files by referring to the spoolid number, for example:

cp query printer 4187

You can also request additional information about the files, including
file identification and creation time:

cp query reader all

If you want to know the total number of spool files associated with
your virtual machine, you can use the command

cp query files
The response to this message is the same as the message you receive if

you have spool files when you log on.

50 IBM VM/370: CMS User's Guide

Section 4. The CMS File System

The file is the essential unit of data in the CMS systen. CMS disk
files are unigque to the CMS system and cannot be read or written using
other operating systems. When you create a file in CMS, you name it
using a file identifier. The file identifier consists of three fields:

e Filename (£n)
e Filetype (ft)
e Filemode (£fm)

When you use CMS commands and programs to modify, update, or
reference files, you must identify the file by using these fields. Some
CMS commands require you to enter only the filename, or the filename and
filetype; others require you to enter the filemode field as well. This
section contains information about the things you must consider when you
give your CMS files their identifiers, notes on the file system commands
that create and modify CMs files, and additional notes on using CMS
disks.

CMS File Formats

The CMS file management routines write CMS files on disk in 800-byte
physical blocks, regardless of vhether they have fixed- or
variable-length records. For most of your CMS applications, you never
need to specify either a logical record length and record format or
block size when you create a CMS file.

When you create a file with the CMS Editor, the file has certain
default characteristics, based on its filetype. The special filetypes
recognized by the editor, and their applications, are discussed under
“"What are Reserved Filetypes?"

VSAM files written by CMS are in the same format as VSAM files
written by 0S/VS or DOS/VS and are recognized by those operating
systems. You cannot, however, use any CMS file system commands to read
and write VsSAM files, because VSAM file formats are unique to the
Virtual Storage Access Method.

A single CMS file can contain up to 12,848,000 bytes of data grouped
into up to 65,535 1logical records, all of which must be on the same
minidisk. If the file is a source program, the file size limit may be
smaller. The maximum number of files per real disk is 3400 for a 3330,
3333, 3340, or 3350 disk, or 3500 for a 2314 or 2319.

How CMS Files Get Their Names
When you create a CMS file, you can give it any filename and filetype
you wish. The rules for forming filenames and filetypes are:

e The filename and filetype can each be from 1- to 8 characters.
e The valid characters are A-32, 0-9, and §$, #, @

When you enter a command line into the VM/370 system, your input line

is always translated, by VM/370, into uppercase characters. So, when you
specify a file identifier, you can enter it in lowercase.

Section 4. The CMS File System 51

Remember that, by default, the # and @ characters are line editing
symbols in VM/370; when you use them to identify a file, you must
precede them with the logical escape symbol (").

The third field in the file identifier, the filemode, indicates the
mode letter (A-G, S, Y, or Z) «currently assigned to the virtual disk on
which you want the file to reside. When you use the CMS Editor to
create a file, and you do not specify this field, the file you create is
written on your A-disk, and has a filemode letter of A.

The filemode letter, for any file, can change during a terminal
session. For example, when you log on, your virtual disk at address 191
is accessed as your A-disk, so a file on that disk named SPECIAL EVENTS
has a file identifier of:

SPECIAL EVENTS A

If, however, you later access another disk as your A-disk, and access
your 191 as your B-disk, then this file has a file identifier of:

SPECIAL EVENTS B

DUPLICATING FILENAMES AND FILETYPES

You can give the same filename to as many files on a given disk as you
vant, as long as you assign them different filetypes. Or you can create
many files with the same filetype but different filenames.

For the most part, filenames that you choose for your files have no
special significance to CMS. If, however, you choose a name that is the
same as the name of a CMS command, and the file that you assign this
name to is an executable module or EXEC procedure, then you may
encounter difficulty if you try to execute the CMS command whose name
you duplicated.

For an explanation of how CMS identifies a command name, see "CHMS
Command Search Order" later in this section.

Many CMS commands allow you to specify one or more of the fields in a
file identifier as an asterisk (*) or equal sign (=), which identify
files with similar fileids.

Some CMS commands that manipulate disk files allow you to enter the
filename and/or filetype fields as an asterisk (*), indicating that all
files of the specified filenames/filetype are to be modified. These
commands are:

COPYFILE RENAME
ERASE TAPE DUMP

For example, if you specify
erase * test a

all files with a filetype of TEST on your A-disk are erased.

52 IBM VM/370: CMS User's Guide

similarly, if you enter the command
rename temp * b perm = =

all files with a filename of TEMP are renamed to have filenames of PERM;
the existing filetypes of the files remain unchanged.

The LISTFILE command allows 7you to request similar lists. If you
specify an asterisk for a filename or filetype, all of the files of that
filename or filetype are listed. There is an additional feature that you
can use with the LISTFILE command, to obtain a 1list of all the files
that have a filename or filetype that begin with the same character
string. For example,

listfile t* assemble

produces a list of all files on your A-disk whose filenames begin with
the letter T. The command

listfile tr* a*

produces a list of all files on your A-disk whose filenames begin with
the letters TR and whose filetypes begin with the letter A.

Equal Signs in Qutput Fileids

The COPYFILE, RENAME, and SORT commands allow you to enter output file
identifiers as equal signs (=), . to indicate that it is the same as the
corresponding input file identifier. For example,

copyfile myprog assemble b = = a

copies the file MYPROG ASSEMBLE from your B-disk to your A-disk, and
uses the same filename and filetype as specified in the input fileid for
those positions in the output fileid.

What Are Reserved Filetypes?

For the purposes of most CMS commands, the filetype field is used merely
as an identifier. Some filetypes, though, have special wuses in CHMS;
these are known as "reserved filetypes."

Nothing prevents you from assigning any of the reserved filetypes to
files that are not being used for the specific CMS function normally
associated with that filetype.

Reserved filetypes also have special significance to the CMS Editor.
When you use the EDIT command to create a file with a reserved filetype,
the editor assumes various default characteristics for the file, such as
record length and format, tab settings, translation to uppercase,
truncation column, and so on.

Section 4. The CMS File Systen 53

FILETYPES FOR CMS COMMANDS

Reserved filetypes sometimes indicate how the file is used in the CHMS
system: the filetype ASSEMBLE, for example, indicates that the file is
to be used as input to the assembler; the filetype TEXT indicates that
the file is in relocatable object form, and so on. Many CMS commands
assume input files of particular filetypes, and require you to enter
only the filename on the command line. For exanmple, if you enter

synonym test

CMS searches for a file with a filetype of SYNONYM and a filename of
TEST. A file named TEST that has any other filetype is ignored.

Some CMS commands create files of particular filetypes, using the
filename you enter on the command 1line. The language processors do this
as well; if you are recompiling a source file, but wish to save previous
output files, you should rename them before executing the command.

Figure 2 lists the filetypes used by CMS commands and describes how
they are used. Figure 3 lists the filetypes used by CHS/DOS commands.

In addition to these CHMS filetypes, there are special filetypes
reserved for use by the language processors, which are IBM progran
products. These filetypes, and the commands that use them, are:

Filetypes Commands

COBOL, TESTCOB COBOL, FCOBOL, TESTCOCB

FORTRAN, PREEFORT, FORTRAN, FORTGI, FORTHX
FT'nn001, TESTFORT GOFORT, TESTFORT

PLI, PLIOPT DOSPLI, PLIC, PLICR, PLIOPT

VSBASIC, VSBDATA VSBASIC

For details on how to use these filetypes, consult the appropriate
program product documentation.

54 IBM VM/370: CMS User's Guide

"
|
|
|
I
|
|
|
|
|
I
|
|
|
I
|
|
|
!
|
|
|
|
i
|
|
|
|
l
|
|
|
|
|
|
|
|
|
I
l
|
|

-
| Filetype | Command | Comments

| | |

| AMSERV | AMSERV | Contains VSAM Access Method Services control

| | | statements to be executed with the AMSERV

| | | command.

| | |

| ASM3705 | ASM3705 | Used by system programmers to generate the

| | GEN3705 | 3704,/3705 control program.

| | |

| ASSEMBLE | ASSEMBLE | Contains source statements for assembler

§ | | language programs.

| | |

I AUXxxxx | UPDATE | Points to files that contain UPDATE control

| | | statements for multiple updates.

i | |

| CNTRL | UPDATE | Lists files that either contain UPDATE control
i | | statements or point to additional files.

| | |

| COPY | MACLIB | Can contain COPY control statements and macros
| | | or copy files to be added to MACLIBs.

{ | |

{ DIRECT | DIRECT | Contains entries for the VM/370 user directory
| | | £file. The system operator controls this file.
| | |

| EXEC | EXEC | Can contain sequences of CMS or user-—written

| | GEN3705 | commands, with execution control statements.

i | LISTFILE |

| | |

| LISTING | AMSERV | Listings are produced by the assembler and

[| ASSEMBLE | the language processors as well as the AMSERV
| | ASM3705 | command.

{ | |

| LKEDIT | LKED | Contains the listing created during the

i | | generation of the 3704/3705 control program.

| | |

| LOADLIB | LKED | Is a library of 3704,/3705 control program

l | | load modules created during 3704/3705 control
i | | program generation.

I | (

{ MACLIB | GLOBAL | Library members contain macro definitions or

| | MACLIB | copy files; the MACLIB command creates the

i | | library, and lists, adds, deletes, or replaces|
| | | members. The GLOBAL command identifies which |
i | | macro libraries should be searched during an

i 1 | assembly or compilation.

l | |

| MACRO | MACLIB | Contains macro definitions to be added to a

1 | | CMS macro library (MACLIB).

| | |

| MAP | INCLUDE | Maps created by the LOAD and INCLUDE commands
i | LOAD | indicate entry point locations; the MACLIB,

| | MACLIB | TXTLIB, and TAPE commands produce MAP files.

| | TAPE |

| | TXTLIB |

[

Figure 2. Filetypes Used

by CMS Commands (Part 1 of 2)

Section 4. The CMS File Systenm 55

which is used by system support personnel.

I 1
| Filetype | Command | Comments |
{ l l |
MODULE	GENMOD	MODULE files created by the GENMOD command are
{ LOADMOD	nonrelocatable executable progranms.	
	MODMAP	The LOACMOD commands loads a MODULE file for
[execution; the MODMAP command displays a map
		of entry point locations.
	{	
SYNONYM	SYNONYM	Contains a table of synonyms for CMS commands {
{		and user—written EXEC and MODULE files.
SCRIPT?!	SCRIPT	SCRIPT text processor input includes data and
		SCRIPT control words.
]		
TEXT	ASSEMBLE	TEXT files contain relocatable object code
	INCLUDE	created by the assembler and compilers. The
	LOAD	LOAD and INCLUDE commands load them into
]	TXTLIB	storage for execution. The TXTLIB command
		manipulates libraries of TEXT files.
TXTLIB	GLOBAL	Library members contain relocatable object
	TXTLIB	code. The TXTLIB command creates the library,
	{ and lists or deletes existing members. The	
		GLOBAL command identifies TXTLIBs to search.
UPDATE	UPDATE	Contains UPDATE control statements for single
		updates applied to source prograams. {
UPDLOG	UPDATE	Contains a record of additions, deletions, or
{		changes made with the UPDATE command.
{ l		
UPDTxxxX	UPDATE	Contains UPDATE control statements for
		multilevel updates.
ZAP	ZAP	Contains control records for the ZAP command,
i	l	

|

3

|*SCRIPT is an IBM Installed User Program (IUP).
L

Figure 2. Filetypes Used by CMS Commands (Part 2 of 2)

OUTPUT FILES: TEXT AND LISTING

Output files from the assembler and the language processors are
logically related to the source programs by their filenames. Some of
these files are permanent and some are temporary. For example, if you
issue the command

assemble myfile

CMS locates a file named MYFILE with a filetype of ASSEMBLE and the
system assembler assembles it. If the file is on your A-disk, then when
the assembler completes execution, the permanent files you have are:

MYFILE ASSEMBLE A1
MYFILE TEXT Al
MYFILE LISTING A1

where the TEXT file contains the object code resulting f£from the

assembly, and the LISTING file contains the program listing generated by
the assembly. If any TEXT or LISTING file with the same name previously

56 IBM VM/370: CMS User's Guide

r 1
| Filetype | Command | Comments |
| |
COPY	MACLIB	When the SSERV command copies books or macros
	SSERV	from DOS source statement libraries, the output
		is written to CMS COPY files, which can be added
		to CMS macro libraries with the MACLIB command.
{ DOSLIB	DOSLIB	DOS core image phases are placed in a DOSLIB by
]	DOSLNK	linkage editor, invoked with the DOSLNK command.
	FETCH	The GLOBAL command identifies DOSLIBs to be
	GLOBAL	searched when the FETCH command is executed.
DOSLNK	DOSLKED	Contains linkage editor control statements for
i		input to the CMS/DOS linkage editor.
ESERV	ESERV	Contains input control statements for the ESERV
!		utility progranm.
l		I
EXEC	LISTIO	The LISTIO command with the EXEC option creates
1	the $LISTIO EXEC that lists system and 1	
		programmer logical unit assignments.
		l
LISTING	ASSEMBLE	Listings contain processor output from the ESERV
	ESERV	command, and compiler output from the assembler
		and language processors.
I		I
MACRO	ESERV	Contains SYSPCH output from the ESERV progranm,
	MACLIB	suitable for addition to a CMS MACLIB file.
MAP	DOSLIB	The DSERV command creates listings of the
	DOSLKED	directories of DOS libraries. The DOSLIB command
	DSERV	with the MAP option produces a list of DOSLIB
		members. The linkage editor map from the DOSLKED
		command is written into a MAP file.
PROC	PSERV	The PSERV command copies procedures from DOS
i	procedure libraries into CMS PROC files.	
TEXT	ASSEMBLE	Object decks created by the assembler or
	DOSLKED	compilers are written into TEXT files. The RSERV
	RSERV	command creates TEXT files from modules in DOS
i | | relocatable libraries. TEXT files can also be |
1 | | used as input to the linkage editor. |
[]

Figure 3. Filetypes Used in CMS/DOS

existed, it is erased. The source input file, MYFILE ASSEMBLE A1, is
neither erased nor changed.

The characteristics of the TEXT and LISTING files produced by the
assembler are the same as those created by other processors and programs
in CMS.

Because these files are CMS files, you <can use the CMS Editor to
examine or modify their contents. If you want a printed copy of a
LISTING file, you can use the PRINT command to print it. If you want to
examine a TEXT file, you can use the TYPE or PRINT command specifying
the HEX option.

Section 4. The CMS File Systen 57

FILETYPES FOR TEMPORARY FILES

The filetypes of files created by the assembler and language processors
for use as temporary workfiles are:

SYSUT1 SYS001 SYS004
SYSUT2 5Ys002 SYsS005
SYSUT3 SYS003 SYS006
SYSUT4

The CMS AMSERV command, executing VSAM utility functions, uses two
workfiles, that have filetypes of LDTFDI1 and LDTFDI2.

pisk space is allocated for temporary files on an as-needed basis.
They are erased when processing is complete. If a program you are
executing is terminated before completion, these workfiles may remain on
your disk. You can erase them.

CMSUT1 Files

The CMSUT1 filetype is used by CMS commands that create files on your
CMS disks. The CMSUT1 file is used as a workfile and is erased when the
file is created. When a command fails to complete execution properly,
the CMSUT1 file may not be erased. The commands, and the filenames they
assign to files they create, are listed below.

Command Filename
COPYFILE COPYFILE
DISK LOAD DISK

EDIT EDIT

INCLUDE DMSLDR
LOAD DMSLDR
MACLIB DMSLBM

READCARD READCARD
TAPE LOAD TAPE
UPDATE fn (the filename of the UPDATE file)

FILETYPES FOR DOCUMENTATION

There are two CMS reserved filetypes that accept uppercase and lowercase
input data. These are MEMO and SCRIPT. You can use MEMO files to
document program notes or to write reports. The SCRIPT filetype is used
by the SCRIPT command, which invokes a text processor that is an IBM
Installed User Program (IUP).

Filemode Letters and Numbers

The filemode field of a CMS file identifier has two characters: the
filemode 1letter and the filemode number. The filemode 1letter is
established by the ACCESS command, and specifies the virtuwal disk on
which a file resides: A through G, S, ¥, or Z. The filemode number is a
number from 0 to 5, which you can assign to the file when you create it
or rename it; if you do not specify it, the value defaults to 1. How
you access your disks and what filemode letters you give them with the

58 IBM VM/370: CMS User's Guide

ACCESS command depends on how you want to use the files that are on
them.

For most of the reading and writing you do of files, you use your
A-disk, which is also known as your primary disk. This is a read/write
disk. You may access other disks in your configuration, or access
linked-to disks, in read-only or read/write status, depending on whether
you have a read-only or read/write link.

When you load CMS (with the 1IPL command), your virtual disk at
address 191 is accessed for you as your A-disk. Your virtual disk at
address 190 (the system disk) is accessed as your S-disk; and the disk
at 19E is accessed as an extension of your S-disk, with a mode letter of
Y. In addition, if you have a disk defined at address 192, it is
accessed for you as your D-disk.

The actual letters you assign to any other disks (and you may
reassign the letters A, D, and Y), is arbitrary; but it does determine
the CMS search order, which is the order in which CMS searches your
disks when it is looking for a file. The order of search (when all disks
are being searched) is alphabetical: A through G, S, ¥, and Z. If you
have duplicate file identifiers on different disks, you should check
your disk search order before issuing commands against that filename to
be sure that you will get the file you want. You can find out the
current search order for your virtual disks by issuing the command:

query search

You can also access disks as logical extensions of other disks, for
example:

access 235 b/a

The "/A" indicates that the B-disk is to be a read-only extension of the
A-disk, and the A-disk is considered the *"parent" of the B-disk. A disk
may have many extensions, but only one level of extension is allowed.

How Extensions Are Used

——— R e Eeenes em—matas

If you have a disk accessed as an extension of another disk, the
extension disk is automatically read-only, and you cannot vwrite on it.
You might access a disk as its own extension, therefore, to protect the
files on it, so that you do not accidentally write on it, for example,

access 235 by/b

Another use of extensions is to extend the CMS search order. If you
issue a command requesting to read a file, for example:

type alpha plan

CMS searches your A-disk for the file named ALPHA PLAN and if it does
not find it, searches any extensions that your A-disk may have. If you
have a file named ALPHA PLAN on your B-disk but have not accessed it as
an extension of your A-disk, CMS will not find the file, and you will
have to re-enter the command:

type alpha plan b
Additionally, if you issue a CMS command that reads and writes a

file, and the file to be read is on an extension of a read/write disk,
the output file is written +to the parent read/write disk. The EDIT

Section 4. The CMS File Systen 59

command is a good example of this type of command. If you have a file
named FINAL LIST on a B-disk extension of a read/write A-disk, and if
you invoke the editor to modify the file with the command:

edit final list

after you have made modifications to the file, the changed file is
written onto your A-disk. The file on the B-disk remains unchanged.

When you access a disk as a read-only extension, it remains an extension
of the parent disk as long as both disks are still accessed. If either
disk is released, the relationship is terminated.

If the parent disk is released, the extension remains accessed and
you may still read files on it. If you access another disk at the mode
letter of the original parent disk, the parent/extension relationship
remains in effect.

If you release a read-only extension and access another disk with the
same mode letter, it is not an extension of the original parent disk
unless you access it as such. For example, if you enter

access 198 c/a
release ¢
access 199 c

the C-disk at virtual address 199 is not an extension of your A-disk.

WHEN TO SPECIFY FILEMODE LETTERS: READING FILES

When you request CMS to access a file, you have to identify it so that
CMS can locate it for you. The commands that expect files of particular
filetypes (reserved filetypes) allow you to enter only the filename of
the file when you issue the command. When you execute any of these
commands, or execute a MODULE or EXEC file, CMS searches all of your
accessed disks (using the standard search order) to locate the file.
The CMS commands that perform this type of search are:

AMSERV GLOBAL MODMAP
ASSEMBLE LOAD RUN
DOSLIB LOADMOD TXTLIB
EXEC MACLIB

Some CMS commands require you to enter the filename and filetype to
identify a file. You may specify the filemode letter; if you do not
specify the filemode, CMS searches only your A-disk and its extensions
when it 1looks for the file. If you do specify a filemode letter, the
disk you specify and its extensions are searched for the file. The
commands you use this way are:

EDIT PUNCH TAPE DUMP
ERASE STATE TYPE
FILEDEF SYNONYM UPDATE
PRINT

There are two CMS commands that do not search extensions of disks
when looking for files. They are:

60 IBM VM/370: CMS User's Guide

DISK DUMP
LISTFILE

You must explicitly enter the filemode if you want to use these commands
to list or-dump files that are on extensions.

Using Asterisks and Equal Signs

For some CMS commands, if you specify the filemode of a file as an
asterisk, it indicates that you either do not know or do not care what
disk the file is on and you want CMS to locate it for you. For example,
if you enter

listfile myfile test *

the LISTFILE command responds by listing all files on your accessed
disks named MYFILE TEST. When you specify an asterisk for the filemode
of the COPYFILE, ERASE, or RENAME commands, CMS locates all copies of
the specified file. For example,

rename temp sort * good sort =

renames all files named TEMP SORT to GOOD SORT on all of your accessed
read/write disks. An equal sign (=) is valid in output fileids for the
RENAME, SORT, and COPYFILE commands.

For some commands, when you specify an asterisk for the filemode of a
file, CMS stops searching as soon as it finds the first copy of the
file. For example,

type myfile assemble *
If there are files named MYFILE ASSEMBLE on your A-disk and C-disk, then

only the copy on your A-disk is displayed. The commands that perform
this type of search are:

COMPARE PRINT STATE
DISK DUMP PUNCH SYNONYHM
EDIT RUN TAPE DUMP
FILEDEF SORT TYPE

For the COMPARE, COPYFILE, RENAME, and SORT commands, you must always
specify a filemode letter, even if it is specified as an asterisk.

WHEN TO SPECIFY FILEMODE LETTERS: WRITING FILES

When you issue a CMS command that writes a file onto one of your virtual
disks, and you specify the output filemode, CMS writes the file onto
that disk. The commands that require you to specify the output filemode
are:

COPYFILE
RENAME
SORT

The commands that allow you to specify the ocutput filemode, but do
not require it, are:

Section 4. The CMS File Systen 61

FILEDEF TAPE LOAD
GENMOD TAPPDS
READCARD UPDATE

When you do not specify the filemode on these commands, CMS writes the
output files onto your A-disk.

Some CMS commands that create files always write +them onto your
A-disk. The LOAD and INCLUDE commrands write a file named LOAD MAP AS.
The LISTFILE command creates a file named CMS EXEC, on your A-disk. The
CMS/DOS commands DSERV, ESERV, SSERV, PSERV, and RSERV also write files
onto your A-disk.

Other commands that do not allow you to specify the filemode write
output files either:

e To the disk from which the input file was read
e To your A-disk, if the file was read from a read-only disk.

These commands are:

AMSERV
MACLIB
TXTLIB ~
UPDATE

The SORT command also functions this way if you specify the output
filemode as an asterisk (¥).

In addition, many of the language processors, when creating work
files and permanent files, write onto the first read/write disk in your
search order, if they cannot write on the source files's disk or its
parent.

HOW FILEMODE NUMBERS ARE USED

Whenever you specify a filemode letter to reference a file, you can also
specify a filemode number. Since a filemode number for most of your
files is 1, you do not need to specify it. The filemode numbers 0, 2,
3, 4, and 5 are discussed below. Filemode numbers 6 through 9 are
reserved for IBM use.

Filemode 0: A filemode number of 0 assigned to a file makes that file
private. No other user may access it unless they have read/write access
to your disk. If someone links to your disk in read-only mode and
requests a list of all the files on your disk, the files with a filemode

of 0 are not listed.

Filemode 2: Filemode 2 is essentially the same, for the purposes of
reading and writing files, as filemode 1. Usually a filemode of 2 is
assigned to files that are shared by users who link to a common disk,
like the system disk. Since you can access a disk and specify which
files on that disk you want to access, files with a filemode of 2
provide a convenient subset of all files on a disk. For example, if you

issue the command:
access U89 es/a * * e2

you can only read files with a filemode of 2 on the disk at virtual
address 489.

62 IBM VM/370: CMS User's Guide

Filemode 3: Files with a filemode of 3 are erased after they are read.
If you create a file with a filemode of 3 and then request that it be
printed, the file is printed, and then erased. You can use this filemode
if you write a program or EXEC procedure that creates files that you do
not want to maintain copies of om your virtual disks. You can create the

file, print it, and not have to worry about erasing it later.

The language processors and some CMS commands create work files and
give these work files a filemode of 3.

Filemode 4: Files with a filemode of U4 are in O0S simulated data set
format. These files are created by 0OS macros in programs running in
CMS. You specify that a file created by a program is to have O0S
simulated data set format by specifying a filemode c¢f 4 when you issue
the FILEDEF command for the output file. If you do not specify a

filemode of 4, the output file is created in CMS format.

You can find more details about O0S simulated data sets in "Section
8. Developing 0S Programs Under CMS."

Note: There are no filemode numbers reserved for DOS or VSAM data sets,
since CMS does not simulate these file organizations.

Filemode 5: This filemode number is the same, for purposes of reading
and writing, as filemode 1. You can assign a filemode of 5 to files that
you want to maintain as logical groups, so that you can manipulate them
in groups. For example, you can reserve the filemode of 5 for all files
that you are retaining for a certain period of time; then, when you want

to erase them, you could issue the command:
erase * * a5

The CMS commands that create files with a filetype of MAP assign these
files a filemode of 5.

#hen To Enter Filemode Numbers

You can assign filemode numbers when you use the following commands:

COPYFILE: You can assign a filemode number when you create a new file
with the COPYFILE command. To change only the filemode number of an
existing file, you must use the REPLACE option. For example

copyfile test module a1l = = a2 (replace
changes the filemode number of the file TEST MODULE A from 1 to 2.
EDIT: You can assign a filemode number when you create a file with the
CMS Editor. To change the filemode number of an existing file, use the
RENAME or COPYFILE commands, or use the FMODE subcommand when you are in
the edit environment.

DLBL, FILEDEF: When you assign file definitions to disk files for
programs or CMS command functions, you can specify a filemode number.

GENMOD: You can specify a filemode number on the GENMOD command line.

or COPYFILE commands.

READCARD: You can assign a filemode number when you specify a file

Section 4. The CMS File Systen 63

RENAME: When you specify the fileids on the RENAME command, you can

specify the filemode numbers for the input and/or output files.

SORT: You can specify filemode numbers for the input and/or output
fileids on the SORT command 1line.

Managing Your CMS Disks

The number of files you can write on a CMS disk depends on both the size
of the disk and the size of the files that it contains. You can find
out how much space 1is being used on a disk by using the QUERY DISK
command. For example, to see how much space is on your A-disk, you would
enter

query disk a
The response may be something like this:

A (191): 171 FILES; 1221 REC IN USE, 107 LEFT (of 1328),
92% FULL (5 CYL), 3330, R/W

When a disk is becoming full, you should erase whatever files you no
longer need. Or dump to tape files that you need to keep but do not need
to keep active on disk.

When you are executing a command or program that writes a file to
disk, and the disk becomes full in the process, you receive an error
message, and you have to try to clear some space on the disk before you

can attempt to execute the command or program again. To avoid the
delays that such situations cause, 7you 'should +try to maintain an
awareness of the usage of your disks. If you cannot erase any more

files from your disks, you should contact installation support personnel
about obtaining additional read/write CMS disk space.

CMS File Directories

Each CMS disk has a master file directory that contains entries for each
of the CMS files on the disk. When you access a disk, information from
the master file directory is brought into virtual storage and written
into a user file directory. The user file directory has an entry for
each file that you may access. If you have accessed a disk specifying
only particular files, then the user file directory contains entries
only for those files.

If you have read/write access to a disk, then each time you write the
file onto disk the user file directory and master file directory are
updated to reflect the current status of the disk. If you have read-only
access to a disk, then you cannot update the master file directory or
user file directory. If you access a read-only disk while another user
is writing files onto it, you may need to periodically reissue the
ACCESS command for the disk, to obtain a fresh copy of the master file
directory.

Note: You should never attempt to write on a disk at the same time as
another user.

The user file directory remains in virtual storage until you issue

the RELEASE command specifying the mode letter or virtual address of the
disk. If you detach a virtual disk (with the CP DETACH command) without

64 IBM VM/370: CMS User's Guide

releasing it, CMS does not know that the disk is no longer part of your
virtual machine. When you attempt to read or write a file on the disk
CMS assumes that the disk 1is still active (kecause the user file
directory is still in storage) and encounters an error when it tries to
read or write the file.

A similar situation occurs if you detach a disk and then add a new
disk to your virtual machine using the same virtual address as the disk
you detached. For example, if you enter the following sequence of
commands:

cp link user1 191 195 rr rpass
access 195 d

cp detach 195

cp link user2 193 195 rr rpass?
listfile * * @

the LISTFILE command produces a list of the files on USER1's 191 disk;
if you attempt to read one of these files, 7you receive an error
message. You must issue the ACCESS command to obtain a copy of the
master file directory for USER2's 193 disk.

The entries in the master file directory are sorted alphamerically by
filename and filetype, to facilitate the CMS search for particular
files. When you are updating disk files, the entries in the user file
directory and master file directory tend to tecome unsorted as files are
created, updated, and erased. When you use the RELEASE command to
release a read/write disk, the entries are sorted and the master file
directory is rewritten. If you or any other user subsequently access
the disk, the file search may be more efficient.

CMS Command Search Order

When you enter a command line in the CMS environment, CMS has to locate
the command to execute. If you have EXEC or MODULE files on any of your
accessed disks, CMS treats them as commands, also: they are known as
user-written commands.

As soon as the command name is found, the search stops and the
command is executed. The search order is:

1. EXEC file on any currently accessed disk. CMS uses the standard
search order (A through G, S, Y, and Z.)

2. Valid abbreviation or truncation for an EXEC file on any currently
accessed disk, according to current SYNONYM file definitions in
effect.

3. A command that has already been loaded into the transient area.
The transient area commands are:

ACCESS LISTFILE RELEASE
ASSGN MODMAP RENAME
COMPARE OPTION SET

DISK PRINT SVCTRACE
DIBL PUNCH SYNONYM
FILEDEF QUERY TAPE
GENDIRT READCARD TYPE
GLOBAL

Section 4. The CMS File Systen 65

4. A nucleus-resident command. The nucleus-resident CMS commands are:

Cp) GENMOD START
DEBUG INCLUDE STATE
ERASE LOAD STATEW
FETCH LOADMOD

5. Command module on any currently accessed disk. (All the remaining
CMS commands are disk resident and execute in the user area.)

6. Valid abbreviation or truncation for nucleus-resident or transient
area command module.

7. Valid abbreviation or truncation for disk resident command.

For example, if you create a command module that has the same name as
a CMS nucleus-resident command, your command module cannot be executed,
since CMS locates the nucleus-resident command first, and executes it.

Figure 4 shows more details of the command search order; you can find

a complete description of the search order in the VM/370: System
Programmer's Guide.

66 IBM VM/370: CMS User's Guide

CMS
EXEC
SEARCH

CMs

SEARCH

cp
SEARCH

MODULE

COMMAND NAME

NAME AN ABBREV-
IATION OR TRUNCATION

NAME AN ABBREV-
IATION OR TRUNCATION

EXECUTE
THE FILE
AND RETURN
CONTROL TO
CMmS.

EXPAND THE
NAME TO THE
FULL REAL
NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
FILE AND

RETURN CONTROL
TO CMS.

EXPAND THE

NAME TO THE FULL
REAL NAME, EXECUTE
IT, AND RETURN
CONTROL TO CMS.

EXECUTE THE
COMMAND
AND RETURN
CONTROL TO
CMS.

Fiqure

4.

How CMS Searches for the Command to Execute

Section 4. The CMS File System

67

Section 5. The CMS Editor

In CMS usage, the term edit is used in a variety of ways, all of which
refer, ultimately, to the functions of the CMS Editor, which is invoked
when you issue the EDIT command.

To edit a file means to make changes, additions, cr deletions to a
CMS file that is on a disk, and to make these changes interactively: you
instruct the editor to make a change, the editor does it, and then you
request another change.

You can edit a file that does not exist; when you do so, you create
the file online, and can modify it as you enter it.

To file a file means to write a file you are editing back onto a
disk, incorporating any changes you made during the editing session.
When you issue the FILE subcommand to write a file, you are no longer in
the environment of the CMS Editor, but are returned to the CMS
environment. You can, however, write a file to disk and then continue
editing it, by using the SAVE subcommand.

An editing session is the period of time during which a file is in
your virtual storage area, from the moment you issue the EDIT command
and the editor responds EDIT: until you issue +the FILE or QUIT
subcommands to return to the CMS command environment.

The EDIT Command

When you issue the EDIT command you must specify the filename and
filetype of the file you want to edit. If you issue

edit test file

CMS searches your A-disk and its extensions for a file with the
identification TEST FILE. If the file is not found, CMS assumes that you
want to create the file and issuves the message

NEW FILE:
EDIT:

to inform you that the file does not already exist.

If the file exists on a disk other than your A-disk and its
extensions, or if you want to create a file to write on a read/write
disk other than your A-disk, you must specify the filemode of the file:

edit test file b

In this example, your B-disk and its extensions are searched for the
file TEST FILE.

After you issue the EDIT command, you are in edit mode, or the
environment of the CMS Editor. If you have specified the filename and
filetype of a file that already exists, you can now use EDIT subcommands
to make changes or corrections to lines in that file. If you want to
add records to the file, as you would if you are creating a new file,
issue the EDIT subcommand

Section 5. The CMS Editor 69

input

to enter input mode. Every line that you enter is considered a data line
to be written into the disk file. For most filetypes, the editor
translates all of your input data to uppercase characters, regardless of
how you enter it. For example, if you create a file and enter input
mode as follows:

edit myfile test

NEW FILE:

EDIT:

input

INPUT:

This is a file I am

learning to create with the CMS Editor.

the lines are written into the file as

THIS IS A FILE I AM
LEARNING TO CREATE WITH THE CMS EDITOR.

You can use the VM/370 logical 1line editing symbols to modify data
lines as you enter thenm.

To return to edit mode to modify a file or to terminate the edit
session, you must press the Return key on a null line. If you have just
entered a data line, for example, and your terminal's typing element or
cursor is positioned at the last character you entered, Yyou must press
the Return key once to enter the data line, and a second time to enter a
null line.

You may also use the logical line end symbol to enter a null line,
for example,

last line of input#
#

Both of these lines cause you to return to edit mode from input mode.

If you do not enter a null line, but enter an EDIT subcommand or CMS
command, the command line is written into your file as input. The only
exception to this is a line that begins with the characters #CP. These
characters indicate that the command is to be passed immediately to CP
for processing.

WRITING A FILE ONTO DISK

A file you create and the modifications that you make to it during an
edit session are not automatically written to a disk file. To save the
results, you can do the following:

e Periodically issue the subcommand
save

to write onto disk the contents of the file as it exists when you
issue the subcoamand. Periodically issuing this EDIT subcommand
protects your data against a system failure; you can be sure that
changes you make are not lost.

e At the beginning of the edit session, issue the AUTOSAVE subcommand,
with a nuamber:

70 IBM VM/370: CMS User's Guide

autosave 10

Then, for every tenth change or addition to the file, the editor
issues an automatic save request, which writes the file onto disk.

e At the end of the edit session, issue the sukcommand
file

This subcommand terminates the edit session, writes the £file onto
disk, replacing a previous file by that name (if one existed), and
returns you to the CMS environment. You can return to the edit
environment by issuing the EDIT command, specifying a different file
or the same file.

The editor decides which disk to write the file onto according to the
following hierarchy:

e If you specify a filemode on the FILE or SAVE subcommand 1line, the
file is written onto the specified disk.

e If the current filemode of the file is the mode of a read/write disk,
the file is written onto that disk. (If you have not specified a
filemode letter, it defaults to your A-disk.)

e If the filemode is the mode of a read-only extension of a read/write
disk, the file is written onto the read/write parent disk.

e If the filemode is the mode of a read-only disk that is not an
extension of a read/write disk, the editor cannot write the file and
issues an error message.

See "Changing File Identifiers" for information on hov you can tell
the editor what disk to use when writing a file.

If you are editing a file and decide, after making several changes,
that you do not wish to save the changes, you can use the subcommand

quit

No changes that you made since you last used the SAVE subcommand (or the
editor last issued an automatic save for you) are retained. If you have
just begun an edit session, and have made no changes at all to a file,
and for some reason you do not want to edit it at all (for example, you
misspelled the name, or want to change a CMS setting before editing the
file), you can use the QUIT subcommand instead of the FILE subcommand to
terminate the edit session and return to CHMS.

A file must have at least one line of data in order to be written.

EDIT SUBCOMMANDS

While you are in the edit environment, you can issue any EDIT subcommand
or macro. An edit macro is an EXEC file that contains a sequence of EDIT
subcommands that execute as a unit. You can create your own EDIT
subcommands with the CMS EXEC facility. EDIT subcommands provide a
variety of functions. You can:

e Position the current line pointer at a particular line, or record, in
a file.

Section 5. The CMS Editor 71

o Control which columns of a file are displayed or searched during an
editing session.

o Modify data lines.

» Describe the characteristics that a file and its individual records
will have

» Automatically write and update sequence numbers for fixed-length
records.

o Edit files by line number.

o Control the editing session.

Entering EDIT Subcommands

Like CMS commands, EDIT subcommands have a subcommand name and some have
operands. In most cases, a subcommand name (or its truncation) can be
separated from its operands by one or more blanks, or no blanks. For
example, the subcommand lines

type 5
ty 5
t5

are equivalent.

Several subcommands also use delimiters, which enclose a character
string that you want the editor to operate on. For example, the CHANGE
subcomnmand can be entered:

change/apple/pear/
The diagonal (/) delimits the character strings APPLE and PEAR. For the
subcommands CHANGE, LOCATE, and DSTRING, +the first nonblank character
following the subcommand name (or its truncation) is considered the

delimiter. No blank is required following the subcommand name. 1In the
subcommand

locate $vm/$

the dollar sign ($) 1is the delimiter. You cannot use a / in this case,
since the diagonal is part of the character string you want to locate.

When you enter these subcommands, you may omit the final delimiter,
for example

dstring/csect

You must enter the final delimiter, however, when you specify a global
change with the CHANGE subcommand.

For the FIND and OVERLAY subcommands, additional blanks following the
subcommand names are interpreted as arguments. The subcommand

find Pudding

requests the editor to locate the line that has " Pudding" in columns 1
through 9. 1Initial blanks are considered part of the character string.

An asterisk, when used with an EDIT subcommand, may mean "to the end
of the file" or "to the record length." For example,

72 IBM VM/370: CMS User's Guide

delete*
deletes all of the lines in a file, beginning with the current line.
verify *

indicates that the editor should display the entire length of records.

2EDII:

when you make an error entering an EDIT subcommand, the editor displays
the message

?EDIT: 1line...

where line... is the 1line, as you entered it, that the editor does not
understand.

The Current Line Pointer

Wwhen you begin an editing session, a file is copied into virtual
storage; in the case of a new file, virtual storage is acquired for the
file you are creating. In either case, you can picture the file as a
series of records, or lines; these lines are available to you, one at a
time, for you to modify or delete. You can also insert new 1lines or
records following any line that is already in the file.

The line that you are currently editing is pointed to by the current
line pointer. What you do during an editing session is:

e position the current line pointer to access the 1line you want to
edit.

e EJit the 1line: change character strings in it, delete it or insert
new records following it.

e Position the line pointer at the next line you wvant to edit.

When you are editing a file and you issue an EDIT subcommand that
either changes the position of the line pointer or that changes a line,
the current line or the changed line (or lines) is displayed. You can
also display the current line by using the TYPE subconmand:

type

If you want to examine more than one line in your file, you can use the
TYPE subcommand with a numeric parameter. If you enter

type 10

the current line and the 9 lines that follow it are displayed; the line
pointer then stays positioned at the last line that was displayed.

You can move the line pointer up or down in your file. "Up" indicates
a location toward the beginning of the file (the first record); "down"
indicates a location toward the end of the file (the last record). You
use the EDIT subcommands UP and TCOWN to move the line pointer up or down
one or more lines. For example, '

Section 5. The CMS Editor 73

up 5

moves the current line pointer to a line 5 lines closer to the beginning
of the file, and

down
moves the pointer to point at the next sequential record in the file.
You can also request that the line pointer be placed at the
beginning, or top of the file, or at the end, or bottom of the file.
When you issue the subcommand
top
you receive the message
TOF:
and the line pointer is positioned at a null line that is always at the
top of the file. This null line exists only during your editing session;
it is not filed on disk when you end the editing session.
When you issue the subcommand
bottonm
the current line pointer is positioned at the last record in the file.
If you now enter input mode, all lines that you enter are appended to

the end of the file.

If the current line pointer is at the kottom of the file and you
issue the DOWN subcommand, you receive the message

EOF:

and the current line pointer is positioned at the end-of-file, following
the last record.

When you are adding records to your file, the current line pointer is
always pointing at the line you last entered. When you delete a line
from a file, the line pointer moves down +to point to the next line down
in the file.

Going from edit mode to input mode does not change the current line
pointer. If you are creating a new file and, every 30 lines or so, you
move the current line pointer to make corrections to the lines that you

have entered, you must issue the BOTTOM subcommand to begin entering
more lines at the end of the file.

The current line pointer is also moved as the result of the LOCATE
and FIND subcommands. You use the FIND subcommand to get to a line when
you know the characters at the beginning of the line. For example, if
you want to change the line

BAXTER J.F. 065941 ACCNTNT
you could first locate it by using the subcommand:

find baxter

If you do not know the first characters on a line, you can issue the
LOCATE subcommand:

locate /accntnt/

74 IBM VM/370: CMS User's Guide

Both of these subcommands work only in a top-to-bottom direction: you
cannot use them to position the line pointer above the current line. If
you use the FIND or LOCATE subcommands and the target (the character
string you seek) is not found, the editor displays a message, and
positions the line pointer at the end of the file. Subsequently, if you
reissue the subcommand, the editor starts searching at the top of the
file.

In a situation 1like that above, or in a case where you are
repetitively entering the same LOCATE or FIND subcommand (if, for
example, there are many occurrences of the same character string, but
you seek a particular occurrence) you can use the = (REUSE) subcommand.
To use the example above, you are looking for a line that contains the
string ONCE UPON A TIME, but you do not know that it is above the
current line. When you issue the subcommand:

locate /once upon a time/
the editor does not locate the line, and responds:

KOT FOUND
EOF:

if you enter

the editor searches again for the same string, beginning this time at
the top of the file, and locates the line:

“"ONCE UPON A TIME" IS A COMMON

This may still not be the line you are looking for. You can, again,
enter:

The LOCATE subcommand is executed again. This time, the editor might
locate the line:

A STORY THAT STARTED ONCE UPON A TIME

Figure 5 illustrates a simple CMS file, and indicates how the current
line pointer would be positioned following a sequence of EDIT
subcommands.

LINE-NUMBER EDITING: Some fixed-length files are suitable for editing by
referencing line numbers instead of character strings. The EDIT
subcommands that allcw 7you to change the line pointer position by line
number are discussed under "Line-Number Editing."

Section 5. The CMS Editor 75

¥

i EDIT PPRINT EXEC .

I CLP

| === TOF:

(null line)

&CONTROL OFF

&P =

&IF .61 EQ . GEXIT 100

&FN = &1

&IF €1 EQ ? &GOTO -TELL

ENFN = &CONCAT $ &1

&EIF .52 EQ . &EXIT 200

EFT £2

&FM]

10 &IF .83 NE . §&SKIP 2

1 EFM = A

12 &§SKIP 3

13 &IF &3 NE (&SKIP 2

14 E§FM = A

15 &P = (

16 &ECONTROL ALL

COPY &FN &FT &FM ENFN EFT A (UNPACK

18 PRINT &NFN EFT A &P &4 &5 &6 &7 &8 &9 &10 &11 €12 €13 &14

19 ERASE &NFN &FT A

20 EEXIT

21 -TELL ETYPE THIS EXEC PRINTS A LISTING FROM PACKED FORMAT
EQF:

[

OO NEWNaO

f
|

|
|

-
~

|
|
l
f
I
f
I
f

The line numbers represented are symbolic: they are not an actual
part of the file, but are used below to indicate at which line the
current line pointer is positioned after execution of the EDIT
sukcommand indicated.

|
|
|
| Subcommand CLP Position
- --> 0
[DOWN 5 --=> 5
up -—=> 4
| LOCATE /UNP/ -——=> 17
TYPE 3 -—=> 19
| BOTTOM -—=-> 21
| DOWN --=> EOF:
| FIND - -—=> 21
i TOP -—=> 0
} CHANGE /EQ/EQ/ 6 --=> 5
| DELETE 2 ---> 7 (lines numbered 5 and 6 are deleted)
| INPUT * -=--> the line just entered (between 7 and 8)

e e v T . T e B . . — " — T — o " . BT . T —" T — - — T — — — T — T — T — - — T o —— o]

Figure 5. Positioning the Current Line Pointer

Verification and Search Columns

There are two EDIT subcommands you can use to control what you and the
editor "see" in a file. The VERIFY subcommand controls what you see
displayed; the ZONE subcommand controls what columns the editor
searches. Normally, when you edit a file, every request that you make
of the editor results in +the display of one or more 1lines at your
terminal. If you do not want to see the lines, you can specify

verify off
Alternatively, if you want to see only particular columns in a file, you

can specify the columns you wish to have displayed:

76 IBM VM/370: CMS User's Guide

verify 1 30

Some filetypes have default values set for verification, which
usually include those columns in the file that contain text or data, and
exclude columns that contain sequence numbers. If a verification column
is less than the record length, you can specify:

verify *
to indicate that you want to see all columns displayed.

In conjunction with +the VERIFY subcommand, you can use the ZONE
subcommand to tell the editor within which columns it can search or
modify data. When you issue the subcommand

zone 20 30

The editor ignores all text in columns 1-19 and 31 to the end of the
record when it searches 1lines for LOCATE, CHANGE, ALTER, and FIND
subcommands. You cannot unintentionally modify data outside of these
fields; you must change the zones 1in order to operate on any other
data.

The zone setting also controls the truncation column for records when

you are using the CHANGE subcommand; for more details, see "Setting
Truncation Limits.®

Changing, Deleting. and Adding Lines

You can change character strings in individual lines of data with the
CHANGE subcommand. A character string may be any length, or it may be a
null string. Any of the characters on your terminal keyboard, including
blanks, are valid characters. The following example shows a simple data
line and the cumulative effect of CHANGE subcommands.

ABC ABC ABC
is the initial data line.

CHANGE /ABC/XYZ/ :
changes the first occurrence of the character string "ABC" to the
string "XYyz“.
XYZ ABC ABC

CHANGE /ABC//
deletes the character string "ABC"™ and concatenates the characters
on each side of it.

XYZ ABC

CHANGE //ABC/
inserts the string "ABC" at the beginning of the 1line.

ABCXYZ ABC

CHANGE /XYZ /XYZ/
deletes one blank character following "XYZ".

ABCXYZ ABC

Section 5. The CMS Editor 77

CHANGE /C/C /
adds a blank following the first occurrence of the character "“C".

ABC XYZ ABC
is the final line.

THE ALTER SUBCOMMAND: You can use the ALTER subcommand to change a
s5ingle character; the ALTER subcommand allows you to specify a
hexadecimal value so that you can include characters in your files for
which there are no keyboard equivalents. Once in your file, these
characters appear during editing as nonprintable blanks. For example,
if you input the line

IF AR = B THEN

in edit mode and then issue the subcommand
alter = 8c

the line is displayed:
IF A B THEN

Lf you subsequently print the file containing this line on a printer
equipped to handle special characters, the line appears as

IF A < B THEN
since X'8C' is the hexadecimal value of the special character <.

Either or both of the operands on the ALTER subcommand can be
hexadecimal or character values. To change the X'8C' to another
character, for example <, you could issue either

alter 8c ae

alter 8c <
THE OVERLAY SUBCOMMAND: The OVERLAY subcommand allows you to replace
characters in a line by spacing the terminal's typing element or cursor

to a particular character position to make character-for-character
replacements, or overlays. For example, given the line:

! ABCDEF
the subcommand

overlay xyz
results in the line

XYZDEF
A blank entered on an OVERLAY 1line indicates that the corresponding
character is not to be changed; to replace a character with a blank, use
an underscore character (_). Given the abkove 1line, XYZDEF, the
subcommand

overlay ___ 3

results in

DE3 (The "D" is preceded by blanks in columns 1, 2, and 3.)

78 IBM VM/370: CMS User's Guide

Global Changes

You can make global, or repetitive changes, with the CHANGE and ALTER
subcommands. On these subcommand lines, 7you can include operands that
indicate:

e The number of 1lines to be searched for a character or character
string. An asterisk (*) indicates that all lines, from the current
line to the end of the file, are to be searched.

e Whether only the first occurrence or all occurrences on each line are
to be modified. An asterisk (*) indicates all occurrences. If you do
not specify an asterisk, only the first occurrence on any line is
changed.

For example, if you are creating a file that uses the (®) special
character (X'AF') and you do not want to use the ALTER subcommand each
time you need to enter the e, You could use the character - as a
substitute each time you need to enter a e. When you are finished
entering input, move the current line pointer +to the top of the file,
and issue the global ALTER subcommand:

top#alter -~ af * *

A1l occurrences of the character -~ are changed to X'AF'. The current
line pointer is positioned at the end of the file.

When you use a global CHANGE subcommand, you must be sure to use the
final delimiter on the subcommand line. For example,

change /hannible/hannibal/ S

This subcommand changes the first occurrence of the string "HANNIBLE"™ on
the current line and the four lines immediately following it.

You can also make global changes with the OVERLAY subcommand, by
issuing a REPEAT subcommand just prior to the OVERLAY subcommand. Use
the REPEAT subcommand to indicate how many lines you want to be
affected. PFor example, if you are editing a file containing the three
lines

A
B
C

with the current line pointer at line "A", issuing the subcommands:

repeat 3
overlay | | |

results in

Qo>

The current line pointer is now positioned at the line beginning with
the character "C".

Section 5. The CMS Editor 79

Deleting Lines

You delete lines from a file with the DELETE subcommand; to delete more
than one line, specify the number of lines:

delete 6

Oor, if you want to delete all the lines from the current line to the end
of the file, use an asterisk (*):

delete *

If you want to delete an undetermined number of lines, up to a
particular character string, you can use the DSTRING subcommand:

dstring /weather/
When this subcommand is entered, all the lines from and including the
current 1line down to and including the 1line Jjust above +the line
containing the character string "WEATHER" are deleted. The current line
pointer is positioned at the line that has "WEATHER" on it.

If you want to replace a line with another line, you can wuse the
REPLACE subcommand:

Teplace *¥kkkkxk

The current line is deleted and the 1line "¥¥*k*k¥*%w jg5 jnserted 1in its
place. The current line pointer is net moved.

To replace an existing line with many new lines, you can issue the
REPLACE subcommand with no new data line:

replace

The editor deletes the current line and enters input mode.

Inserting Lines

You can insert a single line of data between existing lines using the
INPUT subcommand followed by the line of data you want inserted. For
example

input * this subroutine is for testing only

inserts a single line following the current line. If you want to insert
many lines, you can issue the INPUT subcommand to enter input mode.

You can also add new lines to a file by using the GETFILE subcommand.
This allows you to copy lines from other files to include in the file
you are editing or creating. For example,

getfile single items c
inserts all the 1lines in the file SINGLE ITEMS C immediately following
the current 1line pointer. The 1line pointer is positioned at the last
line that was read in.

You could also specify

getfile double items c 10 25

80 IBM VM/370: CMS User's Guide

to copy 25 lines, beginning with the tenth line, frem the £file DOUBLE
ITEMS C.

The $MOVE and $DUP EDIT macros provide two additional ways of adding
lines into a file in a particular position. The $MOVE macro moves lines
from one place in a file to another, and deletes them from their former
position. For example, if you want to move 10 lines, beginning with the
current line, to follow a line 9 lines above the «current line, you can
enter

$nove 10 up 8
The $DUP macro duplicates the current 1line a specified number of
times, and inserts the new lines immediately following the current
line. Por exanmple,

$dup 3

creates 3 copies of the current line, and 1leaves the current 1line
pointer positioned at the last copy.

Describing Data File Characteristics

Whe you issue the EDIT command to create a new file, the editor checks
the filetype. If it is one of the reserved filetypes, the editor may
assign particular attributes to it, which can simplify the editing
process for you. The default attributes assigned to most filetypes are
as follows:

e Fixed-length, 80-character records

e All alphabetic characters are translated to uppercase, regardless of
how they are entered

e Input lines are truncated in column 80

e Tab settings are in columns 1, 6, 11, 16, 21, ... 51, 61, and so on,
and the tab characters are expanded to blanks

¢ Records are not serialized
The filetypes for some CMS commands and for the language processors
deviate from these default values. Some of the attributes assigned to

files and how you can adjust ‘them to suit your needs are discussed
below. '

RECORD LENGTH
You can specify the logical record length of a file you are creating on
the EDIT command line:

edit new file (lrecl 130

If you do not specify a record length, the editor assumes the
following defaults:

e For editing old files, the existing record length is used.
e For creating new files, the following default values are in effect:

Section 5. The CMS Editor 81

Filetype Record Length Format

EXEC 80 characters Variatle
LISTING 121 characters Variable
SCRIPT 132 characters Variatle
FREEFORT 81 characters Variable
All others 80 Fixed

If you edit a variable-length file and the existing record length is
less than the default for the filetype, the record length is taken from
the default value.

When you use the LRECL option of the EDIT command you can override
these default record lengths; you can also change the record lengths of
existing files to make them larger, but not smaller.

If you try to override the record length of an existing file and make
it smaller, the editor displays an error message, and you must issue the
EDIT command again with a larger record length. For example, suppose
you have on your B-disk a file named MYFILE FREEFORT, which was created
with the default record 1length of 81. If you try to edit that file by
issuing:

edit myfile freefort b (lrecl 72
the editor displays the message:

GIVE A LARGER RECORD LENGTH.
You must then issue the EDIT command again and either specify a length
of 81 or more, or allow it to default to the current record length of
the file.

You can use the COPYFILE command to increase or decrease the record
length of a file before you edit it. For example, if you have
fixed-length, 132-character records in a file, and you want to truncate
all +the records at column 80 and create a file with 80-character
records, you could issue the command

copyfile extra funds a (lrecl 80

L.ong Records

The largest record you can edit with the editor is 160 characters. A
file with record length up to 160 bytes (for example, a listing file
created by a DOS program) can be displayed and edited.

The largest record you can create with the CMS Editor, however, is
130 characters using a 3270 display terminal and 134 characters using a
typewriter terminal such as a 2741 or 1050. If you enter more than 130
characters on a 3270, the record is truncated to 130 characters when you
press the Enter key. If you type more than 134 characters on a line
using a typewriter terminal, CP generates an attention interrupt to your
virtual machine and the .input 1line is lost when you press the Return
key.

For most purposes, you will not need to create records 1longer than
130 characters. If it is necessary, however, you can expand a record
that you have entered. You do this by issuing the CHANGE subcommand
with operands, to add more <characters to the record (for example, by
changing a one-character string to a 31-character string).

82 IBM VM/370: CMS User's Guide

You cannot create a record that is longer than the record length of
the file. For example, if the file you are editing has a default record
length of 80, or if you specified LRECL 80 when you created the file,
the editor truncates all records to 80 characters.

Record Lenqgth and File Size

There is a relationship between the record 1length of a file and the
maximum number of records it can contain. Figqure 6 shows the
approximate number of records, rounded to the nearest hundred, that the
editor can handle in a virtual machine with different amounts of virtual
storage.

These numbers apply to a CMS virtual machine with only one accessed
disk.

| Virtual Machine Size

: Record | :
| Length | 320K | 512K | 768K |1024K |
: 80 Characters | 1700 | 3800 | 6800 | 9800 :
: 120 Characters | 1100 | 2660 | 4700 | 6800 1
: 132 Characters | 1100 | 2400 | 4300 | 6200 :
g 160 Characters | 900 { 2000 | 3600 | 5100 ;

Figure 6. Number of Records Handled by the Editor

RECORD FORMAT

With the CMS Editor, you can create either fixed- or variable-length
files. Except for the filetypes EXEC, LISTING, FREEFORT, and SCRIPT, all
the files you create have fixed-length records, by default. You can
change the format of a file at any time during an editing session by
using the RECFM subcommand:

recfm v
This changes the record format to6 variable-length. This does not change
the record length; in order to add new records with a greater length,
you must write the file onto disk and then reissue the EDIT command.

The COPYFILE command also has an RECFM option, so that you can change
the record format of a file without editing it. The command

copyfile * requests al (recfm v trunc
changes the record formats of all the files with a filetype of REQUESTS

on your A-disk to variable-length. The TRUNC option specifies that you
want trailing blanks removed from each of the records.

Section 5. The CMS Editor 83

USING SPECIAL CHARACTERS

The IMAGE and CASE subcommands control how data, once entered on an
input 1line, is going to be represented in a file. The specific
characters affected, and the subcommands that control their
representation, are:

e Alphabetic characters: CASE subcommand

e Tab characters (X'05'): IMAGE subcommand (ON and OFF operands)
e Backspaces ('16'): IMAGE subcommand (CANON operand)

Alphabetic Characters

If you are using a terminal that has only uppercase characters, you do
not need to use the CASE subcommand; all of the alphabetic characters
you enter are uppercase. On terminals equipped with both uppercase and
lowercase letters, all lowercase alphabetic characters are converted to
uppercase in your file, regardless of how you enter them. If you are
creating a file and you want it to contain both uppercase and lowercase
letters you can use the subcommand

case m

The "M" stands for "mixed." This attribute is not stored with the file
on disk. If you create a new file, and you issue the CASE M subcommand,
all the lowercase characters you enter remain in lowercase. If you
subsequently file the file and later edit it again, you must issue the
CASE M subcommand again to locate or enter lowercase data.

There are two reserved filetypes for which uppercase and lowercase is
the default. These are SCRIPT and MEMO, Loth of which are text or
document-oriented filetypes. For most programming applications, you do
not need to use lowercase letters.

Tab Characters

Logical tab settings indicate the column positions where fields within a
record begin. These logical tab settings do not necessarily correspond
to the physical tab settings on a typewriter terminal. What happens
when you press the Tab key on a typewriter terminal depends on whether
the image setting is on or off. The default for all filetypes except
SCRIPT 1is TIMAGE ON. You can change the default by issuing the
subcommand

image off

If the image setting is on, when you press the Tab key the editor
replaces the tab characters with blanks, starting at the column where
you pressed the Tab key, and ending at the last column before the next
logical tab setting. The next character entered after the tab becomes
the first character of the next field. For example, if you enter

tabset 1 15
and then enter a line that begins with a tab character, the first data

character following the tab is written into the file in column 15,
regardless of the tab stop on your terminal.

84 IBM VM/370: CMS User's Guide

If the image setting is off, the tab character, X'05', is inserted in
the record, just as any other data character is inserted. No blanks are
inserted.

If you want to insert a tab character (X'05') into a record and the
image setting is on, you can do one of the following:

1. Set IMAGE OFF before you enter or edit the record, and then use the
Tab key as a character key.

2. Enter some other character at the appropriate place in the record,
and then wuse the ALTER subcommand to alter that character to a
X105°".

SETTING TABS: When you create a file, there are logical tab settings in
effect, so that you do not need to set them. The default values for the
language processors correspond to the columns used by those processors.
If you want to change them, or if you are creating a file with a
nonreserved filetype, you may want to set them yourself. Use the TABSET

subcommand, for example:
tabset 1 12 20 28 72

Then, regardless of what physical tab stops are in effect for your
terminal, when you press the Tab key with image setting ON, the data you
enter is spaced to the appropriate columns.

The default tab settings used by the editor follow.

Filetype Default Tab Settings

ASSEMBLE, MACRO, 1, 10, 16, 31, 36, 41, u6, 69, 72, 80,
UPDATE, UPDTxXXxX,

ASM3705
AMSERV 2, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 80
FORTRAN 1, 7, 10, 15, 20, 25, 30, 80
FREEFORT 9, 15, 18, 23, 28, 33, 38, 81
BASIC, VSBASIC 7, 10, 15, 20, 25, 30, 80
PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 43, 49, 55,
79, 80
COBOL 1, 8, 12, 20, 28, 36, uu4, 68, 72, 80
All Others i, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 61, 71, 81,

91, 101, 111, 121, 131
Note: When you are specifying tab settings for files, the first tab
setting you specify should be the column in which you want your data to
begin. The editor will not allow you to place data in a column preceding
this one. For example, if you issue
tabset 5 10 15 20
and then enter an input 1line:

input This is a line

Columns 1, 2, 3, and 4 contain blanks; text begins in column 5.

Section 5. The CMS Editor 85

For most of your applications, you do not need to underscore or
overstrike characters or character strings. If you are using a
typevwriter terminal, and are typing files that use backspaces and
underscores, you should use either the IMAGE OFF or IMAGE CANON
subcommands so that the editor handles the Lackspaces properly. IMAGE
CANON is the default value for SCRIPT files.

CANON means that regardless of how the characters are keyed in
(characters, backspaces, underscores), the editor orders, or canonizes,
the characters in the file as: character-backspace-underscore,
character-backspace-underscore, and so on. If, for example, you want an
input line to look like:

ABC

You could enter it as:
ABC, 3 backspaces, 3 underscores
- or -
3 underscores, 3 backspaces, ABC
A typevriter types out the line in the following order:

A backspace, underscore

B backspace, underscore

C backspace, underscore, which results in:
ABC

If you need to modify a line that has backspaces, and you do not want
to rekey all of the characters, backspaces, and overstrike characters in
a CHANGE or REPLACE subcommand, you can use the ALTER subcommand to
alter all of the backspaces to some other character and use a global
CHANGE command. For example, the following sequences shows how to
delete all of the backspace characters on a line:

alter 16 + 1 *
4+A+A_+A_+A_+A
change /_+// 1 *
AAARAA

This technique may also be useful on a display terminal.

SETTING TRUNCATION LIMITS

Every CHMS file that you edit has a truncation column setting: this
column represents the last character position in a record into which you
can enter data. When you try to input a record that is longer than the
truncation column, the record is truncated, and the editor sends you a
message telling you that it has been truncated.

You <can change the truncation column setting with the TRUNC
subcomnmand. For example, if you are creating a file with a record length
of 80 and wish to insert some records that do not extend beyond column
20, you could issue the subcommand

trunc 20

86 IBM VM/370: CMS User's Guide

Then, when you enter data lines, any 1line that is longer than 20
characters is truncated and the editor sends 7you a message. If you are
entering data in input mode, your virtual machine remains in input
mode.

When you use the CHANGE subcommand to modify records, the column at
which truncation occurs is determined by the current zone setting. If
you change a character string:in a 1line to a 1longer string, and the
resultant line extends beyond ‘the current end zone, 7you receive the
message

TRUNCATED.

If you need to create a line longer than the current end zone setting,
use the ZONE subcommand to increase the setting. The subcommand

zone 1 *

extends the zone to the record length of the file. If the end zone
already equals the record 1length, you have to write the file onto disk
and reissue the EDIT subcommand specifying a longer record length.

For most filetypes, the truncation and end zone columns are the same
as the record length. PFor some filetypes, however, data is truncated
short of the record length. The default truncation and end zone columns
are:

Filetype Column
ASSEMBLE, MACRO 71
UPDATE,
UPDTxxxXx
AMSERV, COBOL, 72

DIRECT, FORTRAN
PLI, PLIOPT

All other filetypés are truncated at their record length.

You can, when creating files for your own uses, set truncation
columns so that data does not extend beyond particular columns.

ENTERING A CONTINUATION CHARACTER IN COLUMN 72

When you are using the editor to enter source records for an assembler
language program and you need to enter a continuation character in
column 72, or whenever you want to enter data outside a particular
truncation setting, you can use the following technique:

1. Change the truncation setting to 72, so that the editor does not
truncate the continuation character:

trunc 72
2. Use the TABSET subcommand to set the left margin at column 72:
t&bset 72
3. Use the OVERLAY subcommand to overlay an asterisk in column 72:
overlay *
Since the 1left margin is set at 72, the OVERLAY subcommand line

results in the character * being placed in column 72.

Section 5. The CMS Editor 87

4. Restore the editor truncation and tab settings:

trunc 71
tabset 1 10 16 31 36 41 51 61 71 81

Note: If you issue the PRESERVE subcommand before you change the
truncation and tab settings, then after you enter the OVERLAY
subcommand, you can restore them with the RESTORE subcommand. See

upreserving and Restoring Editor Settings."

Use the $MARK Edit Macro: Another way to insert a continuation character
is to use the $MARK edit macro. You can find out if the $MARK edit macro
is available on your system by entering, in the CMS or CMS subset

environment

listfile $mark exec *
Tf it is not available on your system, you can create the $MARK edit
macro for your own use. See "Section 17. Writing Edit Macros" in "Part
3. Learning to Use EXEC."

If you have the $MARK macro, then when you need to enter a
continuation character, you can enter a null line to get into edit mode,
issue the command

$mark

and then return to input mode to continue entering text.

SERIALIZING RECORDS

Some CMS files that you create are automatically serialized for you.
This means that columns 73 to 80 of each record contain an identifier in
the form:

CCCXXXXX

where ccc are the first 3 characters of the filename and xxxxx is a
sequence number. Sequence numbers begin at 00010 and are incremented by
10.

The filetypes that are automatically serialized in columns 73 to 80
are:

ASSEMBLE FORTRAN PLIOPT
DIRECT COBOL UPDATE
MACRO PLI UPDTXXXX

You can serialize any file that has fixed-length, 80-character
records by using the SERIAL subcommand:

serial on
The SERIAL subcommand can also be used to:
e Assign a particular 3-character identifier:

serial abc

88 IBM VM/370: CMS User's Guide

e sSpecify that all 8 bytes of the sequence field be used to ccntain
numbers:

serial all
e Specify a sequence increment other than 10:
serial on 100
-— or --
serial ccc 100

e Indicate that no sequence numbers are to be assigned to new records
being inserted:

serial off
When you create a file or edit a file with sequence numbers, the
sequence numbers are not written or updated until you issue a FILE or
SAVE subcommand. Because the end verification cclumns for the filetypes
that are automatically serialized are the same as their truncation
columns, you do not see the serial numbers unless you specify
verify *

verify 80

Although the serial numbers are not displayed while you edit the file,
they do appear on your output listings or printer files.

If you are editing files with the following filetypes:
BASIC
VSBASIC
FREEFORT
the sequence numbers are on the 1left. For BASIC and VSBASIC files,
columns 1-5 are used; numbers are blank-padded to the left. For
FREEFORT files, the sequence numbers use columns 1-8, and are

zero-padded to the left. To edit these files, you should use line-number
editing, which is discussed next.

LINE-NUMBER EDITING

To edit a file by line numbers means that when you are adding new lines
to a file or referencing 1lines that you wish to change, you refer to
them by their 1line, or sequence numbers, rather than by character
strings. You can use line-number editing only on files with
fixed-length, 80-character records.
If you vwant to edit by line numbers, issue the subcommand

linemode right

linemode left
where "right" indicates that the sequence numbers are on the right, in
columns 76-80, and "left" indicates you want sequence numbers on the

Section 5. The CMS Editor 89

left in columns 1-5. LINEMODE LEFT is the default for BASIC, VSEASIC,
and FREEFORT files. You do not have to specify it. You must specify
LINEMODE for files with other filetypes.

If you specify LINEMODE RIGHT +to wuse line-number editing on a
typewriter terminal, the line numbers are displayed on the left, as a
convenience, while you edit the file.

When you are using line-number editing in input mode, you are
prompted to enter lines; the line numbers are in increments of 10. For
example, when you are creating a new file, you are prompted for the
first line number as follows:

10

On a typewriter terminal, you enter your input line following the 10.
When you press the carriage return, you are prompted again:

20

and you continue entering lines in this manner until you enter a null
line.

You can change the prompting increment to a larger or smaller number
with the PROMPT subcommand:

prompt 100

When you are in edit mode you can locate a line by giving its line
number: -

700

This is the nnnnn subcommand. In line-number editing, you use it instead
of the INPUT subcommand to insert a single line of text. For exanmfle,

905 x = a ¥ b

inserts the text 1line "X = A * B" in the proper sequence in the file.
If you use "nnnnn text" specifying the number of a line that already
exists, that 1line is replaced; the current line pointer is moved to
point to it.

The EDIT subcommands that you normally use for context editing, such
as CHANGE, ALTER, LOCATE, UP, DOWN, and so forth, can also be used when
you are.line-number editing; their operation does not change.

When you are using line-number editing, the editor uses the prompting
increment set by the PROMPT subcomnmand. However, when you begin adding
lines of data between existing lines, the editor uses an algorithm to
select a line number between the current line pumber and the next line
number. If a prompting number cannot be generated because the current
line number and the next line number differ only by one, the editor
displays the message

RENUMBER LINES

and you mnmust resequence the line numbers in the file before you can
continue line-number editing.

90 IBM VM/370: CMS User's Guide

You can resequence the line numbers in one of three ways:

1. If you are a VSBASIC, BASIC, or FREEFORT user, you must use the
RENUM subcommand:

renum

This subcommand resolves all references to 1lines that are
renumbered.

2. If you are using right-handed line-number editing, you must
a. Turn off line-number editing:
linemode off
b. If you want to change the 3-character identifier or specify
8-character sequence numbers, issue the SERIAL subcommand, for
example:

serial all

If you want to use the default serialization setting, you do not
need to issue the SERIAL subcommand.

c, Issue the SAVE subcommand:
save

d. Reissue the LINEMODE subcommand and continue 1line-number
editing:

linemode right

3. If you are using 1left-handed line-number editing for a filetype
other than VSBASIC, BASIC, or FREEFORT, you must manually change
individual line numbers using EDIT subcommands. In order to modify
the line numbers, you must change the zone setting and the tab
setting:

zone 1 *
tabset 1 6

so that you can place data in columns 1 through 6.

When you are using right-handed 1line-number editing, and a FILE,
SAVE, or automatic save request is issued, the editor does not
resequence the serial numbers, but displays the message

RESERIALIZATION SUPPRESSED

so that the lines numbers that are currently saved on disk match the
line numbers in the file. You must cancel line-number editing (using the
LINEMODE OFF subcommand) before you can issue a FILE or SAVE subcommand
if you want to update the sequence numbers.

Controlling the Editor

There are a number of EDIT subcommands that you can use to maximize the
use of the editor in CMS. A few techniques are suggested here; as you
become more familiar with VM/370 and CMS you will develop additional
techniques for your own applications.

Section 5. The CMS Editor 91

COMMUNICATING WITH CMS AND CP

often during a terminal session, you may need to issue a CMS command or
a CP command. You can issue certain CMS commands and most CP commands
without terminating the edit session. The EDIT subcommand CMS places
your virtual machine in the CMS subset mode of the editor, where you can
issue CMS commands that do not modify your virtual storage. Remember
that the editor is using your virtual storage; if you overlay it with
any other command or program, you will not be able to finish your
editing.

One occasion when you may want to enter CMS subset is when you want
to issue a GETFILE subcommand for a file on one of your virtual disks
and you have not accessed the disk. You can enter:

cms
the editor responds:
CMS SUBSET

and you can enter

access 193 by/a
return
get setup script b

The special CMS SUBSET command RETURN returns your virtual machine to
edit mode.

You can enter CP commands from CMS subset, or you can issue thenm
directly from edit mode or input mode with the #CP function. For
example, if you are inputting lines into a file and another user sends
you a message, you can reply without leaving input mode:

#cp m oph i will call you later

If you enter #CP without specifying a command line, you receive the
message

Cp

which indicates +that your virtual machine is in the CP command
environment, and you can issue CP commands. You would not, however,
vant to issue any CP command that would modify your virtual storage or
alter the status of the disk on which you want to write the file.

To return to edit or input mode from CP, use the CP command, BEGIN.

CHANGING FILE IDENTIFIERS

There are several methods you can use to change a file identifier before
writing the file onto disk. You can use the FNAME and FMODE subcommands
to change the filename or filemode, or you can issue a FILE or SAVE
subcommand specifying a new file identifier.

For example, if you want to create several copies of a file while you

are using the editor, you can issue a series of FNAME subcommands,
followed by SAVE subcommands, as follows:

92 IBM VM/370: CMS User's Guide

edit test file
EDIT:

fn testil#save

fn test2#save

fn test3#file
Or, you could issue the SAVE and FILE subcommands as follows:

edit test file

save test1

save test2

.

file test3

In both of the preceding examples, when the FILE subcommand is executed,
there are files named TEST FILE, TEST1 FILE, TEST2 PILE, and TEST3 FILE.
The original TEST FILE is unchangead.

To change the filemode letter of a disk, use the FMODE subcommand.
You can 4o this in cases where you have begun editing a file that is on
a read-only disk, and want to write it. Since you cannot write a file
onto a read-only disk, you can issue the FMODE subcommand to change the
mode before filing it:

fmode a
file

0r, you can use the FILE (or SAVE) subcommand specifying a complete file
identifier:

file test file a

You should remember, however, that when you write a file onto disk,
it replaces any existing file that has the same identifier. The edltor
does not issue any warning or informational messages. If you are
changing a file identifier while you are editing the file, you must be
careful that you do not wunintentionally overlay existing files. To
verify the existence of a file, you can enter CMS subset and issue the
STATE or LISTFILE commands.

CONTROLLING THE EDITOR'S DISPLAYS

When you are using a typewriter terminal, you may not always want to see
the editor verify the results of each of your subcommands. Particularly
when you are making global changes, you may not want to see each line

Section 5. The CMS Editor 93

displayed as it is changed. You can issue the VERIFY subcommand with
the OFF operand to instruct the editor not to display anything unless
specifically requested. After you issue

verify off

lines that are normally displayed as a result of a subcommand that moves
the current line pointer (UP, DOWN, TOP, BOTTOM, and so forth), or that
changes a line (CHANGE, ALTER, and so forth), are not displayed. If the
current line pointer moves to the end of the file, however, the editor
always displays the EOF: message.

If you are editing with verification off, then you must be
particularly careful to stay aware of the position of your current line
pointer. You can display the current line at any time using the TYPE
subcommand:

type

Long and Short Error Messages: When you enter an invalid subcommand

while you are using the editor, the editor normally responds with the
error message

?EDIT: line...

displaying the line that it d4id not recognize. If you prefer, you can
issue the SHORT subcommand so that instead of receiving the long form of
the error, you receive the short form, which is:

-

When you issue an invalid edit macro reguest (any line that begins with
a $), you receive the message

-%

To resume receiving the long form of the error message, use the LONG
subcommand:

long

LONG and SHORT control the display of the error message regardless of
whether you are editing with verification on or off.

PRESERVING AND RESTORING EDITOR SETTINGS

The PRESERVE and RESTORE subcommands are used together; +the PRESERVE
subcommand saves the settings of the EDIT subcommands that control the
file format, message and verification display, and file identifier. If
you are editing a file and you want to temporarily change some of these
settings, issue the PRESERVE subcommand to save their current status.
Wwhen you have finished your temporary edit project, issue the RESTORE
subconmand to restore the settings.

For example, if you are editing a SCRIPT file and want to change the
image setting to create a particular format, you can enter:

preserve
image on
tabset 1 15 40 60 72
zone 1 72
trunc 72

9y IBM VM/370: CMS User's Guide

When you have finished entering data using these settings, you can issue
the subcommand

restore

to restore the default settings for SCRIPT filetypes.

X, Y, =, ? SUBCOMMANDS

The X, Y, =, and ? subcommands all perform very simple functions that
can help you to extend the language of the CMS Editor. They allow you
to manipulate, reuse, or interrogate EDIT subcommands.

If you have an editing project in which you have to execute the same
subcommand a number of times, you can assign it to the X or Y
subcommands, as follows:

x locate /insert herey/
Y getfile insert file c

Each time that you enter the X subcommand:
X

the command 1line LOCATE /INSERT HERE/ is executed, and every time you
enter the Y subcommand:

Y

the GETFILE subcommand is executed.

When you specify a number following an X or Y subcommand, the
subcommand assigned to X or Y is executed the specified number of times,
for example

X locate /aa/
x 10

the LOCATE subcommand line is executed 10 times before you can enter
another EDIT subcommand.

Another method of re-executing a particular subcommand is to use the
= (REUSE) subcommand. For example, if you enter

locate sard/
AARDVARK

_——=====

the LOCATE subcommand is re-executed 7 times.

What the = (REUSE) subcommand actually does is to stack the
subcommand in the console stack. Since CHMS, and the editor, read from
the console stack before reading from the terminal, the lines in the
stack execute before a read request is presented to the terminal. When
you enter multiple equal signs, the subcommand is stacked once for each
equal sign you enter.

You can also stack an additional EDIT subcommand following an equal
sign. The subcommand 1line is also stacked, but it is stacked LIFO
(last-in, first-out) so that it executes before the stacked subcommand.
For example, if you enter:

Section 5. The CMS Editor 95

delete
= next

s DELETE subcommand is executed, then a DELETE subcommand is stacked,
and a NEXT subcommand is stacked in front of it. Then the stacked lines
are read in and executed. The above sequence has the same effect as if
you enter

delete
next
delete

In addition to stacking the last subcommand executed, you can also
find out what it was, using the ? subcommand. For example, if you enter

next 10
?

the editor displays
NEXT 10

Since the subcommand line NEXT 10 was the last subcommand entered, if
you enter an = subcommand, it is executed again. You cannot stack a ?
subcommand.

Note: The ? subcommand, on a display terminal, copies the 1last EDIT

subcommand into the user input area, where you may modify it before
re-entering it.

WHAT TO DO WHEN YOU RUN OUT OF SPACE

There are two situations that may prevent you from continuing an edit
session or from writing a file onto disk. You should be aware of these
situations, know how to avoid them, and how to recover from them, should
they occur.

Wwhen you issue the EDIT command to edit a file, the editor copies the
file into virtual storage. If it is a 1large file, or you have made many
additions to it, the editor may run out of storage space. If it does, it
issues the message:

AVAILABLE STORAGE IS NOW FULL
When this happens, you cannot make any changes or additions to the file
unless you first delete some lines. If you attempt to add a line, the
editor issues the message

NO ROOM

If you were entering data in input mode, jyour virtual machine is
returned to edit mode, and you may receive the message

STACKED LINES CLEARED
which indicates that any additional lines you entered are cleared and

will not be processed.

You should use the FILE subcommand to write the file onto disk. If
you want to continue editing, you should see that the editor has more

96 IBM VM/370: CMS User's Guide

storage space to work with, To do this, you can find out how large your
virtual machine is and then increase its size. To find out the size,
issue the CP QUERY command:

Cp query virtual storage
If the response is

STORAGE = 256K

You might want to redefine your storage to 512K. Use the CP command
DEFINE, as follows:

cp define storage 512k

This command resets your virtual machine, and you must issue the CP IPL
command to reload the CMS system before you can continue editing.

If a file is very large, the editor may not have enough space to
allow you to edit it using the ELIT command. The message

DMSEDI132s FILE 'fn ft fm' TOO LARGE

indicates that you must obtain more storage space before you can edit
the file. If this is the case, or if you are editing large files, you
should redefine your storage before beginning the terminal session. If
this happens consistently, you should see your installation support
personnel about having the directory entry for your userid updated so
that you have a large storage size to begin with.

Splitting CMS Files into Smaller Files

If the file you are editing is too large, and the data it contains does
not have to be in one file, you can split the file into smaller files,
so that it is easier to work with. Two of the methods you can use to do
this are described below.

Use the COPYFILE Command: You can use the CCPYFILE command to copy
portions of a file into separate files, and then delete the copied lines
from the original file. For example, if you have a file named TEST FILE
that has 1000 records, and you want to split it into four files, you

could enter:

copyfile test file
copyfile test file
copyfile test file
copyfile test file

testtl file a (fromrec 1 for 250

test2 file a (fromrec 251 for 250
test3 file a (fromrec 501 for 250
testl4 file a (fromrec 751 for 250

[)

When these COPYFILE commands are complete, you have four files
containing the information from the original TEST FILE, which you can
erase:

erase test file

Use the Editor: If you use the editor to create smaller files, you can
edit them as you copy them, that is, if you have other changes that you
want to make to the data. To copy files with the editor, you use the
GETFILE subcommand. Using the file TEST FILE as an example, you might

enter:

Section 5. The CMS Editor 97

edit test1 file
getfile test file a 1 250

file
edit test2 file
getfile test file a 251 250

Again, you could erase the original TEST FILE when you are through with
your edit session.

When Your Disk Is Full

When you enter a FILE or SAVE subconmand or when an automatic save
request is issued, the editor writes a copy of the file you are editing
onto disk, and names it EDIT CMSUT1. If this causes the disk to become
full, you receive the message

DMSBWR170S DISK 'mode {cuu)' IS FULL
The editor erases the workfile, and issues the message
SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE

The original file (as last written onto disk) remains unchanged. You
can use the CMS subcommand to enter CMS subset, and erase any files that
you do not need. You can use the LISTFILE command to 1list the files on
the disk, then the ERASE command to erase the unvanted files.

If you cannot erase any of the file on the disk, there are several
alternate recovery paths you can take:

1. If you have another read/write disk accessed, you can use the FMODE
subcommand to change the filemode of the f£file, so that when you
file it, it is written to the other disk. If you have a read/vwrite
disk that is not accessed, you can access it in CMS subset. After
filing the file on the second disk, erase the original copy, and
then use the COPYFILE command to transfer the file back to its
original disk.

2. If 1you do not have any other readsvrite disk in your virtual
machine, you may be able to transfer some of your files to another
user, using the PUNCH or DISK DUMP commands in CMS subset. When the
files have been read onto the other user's disk, you can erase them
from your disk. Then, return to edit mode and issue the FILE
subcomnand.

3. In CMS subset, erase the original disk file (if it existed), then
return to edit mode and file the copy that you are editing. You
should not use this method unless absolutely necessary, since any
unexpected problems may result in the loss of both the disk file
and the copy.

After you use the FILE subcommand to write the file onto disk, you
should continue erasing any files you no longer need.

98 IBM VM/370: CMS User's Guide

Summary of EDIT Subcommands

The EDIT subcommands, and their formats, are shown in Figure 7. Refer to
the VM/370: CMS Command and Macro Reference for complete details.

Subcommand Format ‘ | Function

| Scans the next n records of
|the file, altering the speci-
| fied character, either once in
|each line or for all occur—
|rences in the line.

ALter char1 char2

————
[-1
@

| S—)
[Spe—

- ——

lAutomatically saves the file
lon disk after the indicated
|number of lines have been
|processed.

AUTOsave

e —
(ol
Irm
I

e

|{Points the current line
|pointer to a line above the
{line currently pointed to.

Bottom |Makes the last line of the
{file the current line.

BAckward

r——-
[y -
| P—

| Indicates whether translation
|to uppercase is to be done, or
|displays the current status.

|

r

CASE | M
| U
L

| S |

S S — —— T — —— O —— — T — — . — o "}

roroaa |Changes string1 to string2 for

In |6111]n records or to EOF, either

11 1*t1 | for the first occurrence in

L L4 |each line or for all
|occurrences.

Change [/string [/string2{/

CMS |Enters CMS subset command
|mode.

|Deletes n lines or to the end
jof the file (x).
|

|

|

| Points to the nth line from
| the current line.

Dstring /[string {/]] |Deletes all lines from the
|current line down to the line
{containing the indicated
| string.

DELete

po———-
= 3%
b e

DOwn

r——n
la &
| SRR |

FILE [fn [ft [£fm]]] |Saves the file being edited on
|disk or changes its identi-
|fiers. Returns to CMS.

[P o T T A T e T e e e T T T R T e S o e e s s ", S e — s o —— .

e S e . T e, S S S . e - — — T o — — — —— o — — —

Figure 7. Summary of EDIT Suhéommands and Macros (Part 1 of 4)

Section 5. The CMS Editor 99

Subcommand Format

| Function

Find [line]]

|Searches the file for the
lgiven line.

FMode [fm] |Resets or displays the
|filemode.
FName [fn] | Resets or displays the

{filename.

FORMat {DISPLAY}
LINE

|Switches the 3270 terminal
{between display mode and line
|mode. (3270 only)

|Points to the nth line after
|the current line.

|

{

|Inserts a portion or all of
|the specified file after the
jcurrent line.

r h |
POrward | n |
11
L 2
. r r r r T T
Getfile fn | £t | fm | m ¢ n | | 1 |
| | I T T I
L L L L [R R R |
r |
IMAGE |ON |
|OFF |
|CANON |
[N 3

|Expands text into line images
lor displays current settings.
|
|
|

Input {line]

|Inserts a line in the file or
|enters input mode.

r 1
LINEmode |LEFT |
IRIGHT]|

| OFF |

L 3

|Sets or displays current
{setting of line—number
|editing.

|

|

[Locate]/(string [/]]

|scans file from next line for
|first occurrence of 'string'.

LONG |Enters long error message
|mode.
|Points to the nth line down
Next |from the current line.

[|

r
| n
11
L

Overlay [line]

{Replaces all or part of the
fcurrent line.

.
|
|
{
|
|
|
|
i
|
|
|
|
|
|
|
I
(
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
(
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(
I
|
|
1
|
|
|
|
|
L

PREserve

|Saves current mode settings.

r
PROMPT |
|

|Sets or displays line number
|increment. Initial setting is
110.

|

h—-———_—_-—————-——-—-—_-—_——-.—._————._—.——_——_—_——-—_-_—-————-—_-—-—-

Figure 7.

100 IBM VM/370: CMS User's Guide

Summary of EDIT Subcommands and Macros (Part 2 of 4)

Subcommand Format | Function

|no updates incorporated since

L}

|

|

| QUIT iTerminates edit session with
|

| llast save request.

1 |Sets or displays record format
| | for subsequent files.
| |
4 (
r r 11 | Recomputes line numbers for
RENum |strtno |incrno|| |VSBASIC and FREEFORT source
110 Istrtnol | |files.
[N [N 44 |

|Executes the following OVERLAY
|subcommand n times.

l

|

{

r————
|= 3% 3
fm——a

Replace [line] |IReplaces the current line or
jdeletes the current line and
|enters input mode.

REStore |Restores Editor settings to
{values last preserved.

RETURN |Returns to edit environment
{from CMS subset.

1
|
{
|
|
|
|
(
|
|
|
]
|
|
|
|
|
|
|
|
!
|
|
|
i
|
l
|
|
|
|
|
|
|

{REUSE} [subcommand]} |Stacks (LIFC) the last EDIT
= Isubcommand that does not start|
| with REUSE or the question |
imark (?) and then executes any|
|given EDIT subcommand. {

SAVE [fn [ft [£fm]]] | Saves the file on disk and
|stays in edit environment.

|Displays a number of screens
jof data above or below the
|current line (3270 only).

|
|

{SCroll }
S{crollju(p]

Pem——a
[-]
| T —— |

SERial OFF
ON
ALL
seq

| Turns serialization on or off
|in columns 73 through 80.

|
l
|
|
l
|
(
|
|
|
|
|
| |
|
|
|
|
(
|
|
|
|
|
|
4

o
H
[P

ro——n
e
=B

SHORT {Enters short error message
Imode.

|Stacks data lines or EDIT
| subcommands in the console
iinput stack.

|

subcommand |
|

Qlma &
| SR g —— |

Figure 7. Summary of EDIT Subcommands and Macros (Part 3 of 4)

Section 5. The CMS Editor 101

Subcommand Format | Function

TABSet n1 [n2 ... nn] |Sets logical tab stops.

TOP [Moves the current line pointer
|to the null line at the top
{of the file.

r 1 |Sets or displays the column of
| n | [truncation. An asterisk (%)

| * | |indicates the logical record
L4 |length.

11 |Displays m lines beginning
Type [| with the current line. Each
(' {line may be truncated to n
|
4 4

|characters.

————
|l B

|Moves the current line pointer
|toward the top of the file.

|

|

(=]

4]
——-

=2
[

1
|
|
|
|
|
|
|
|
i
|
|
|
i
|
|
i
|
|
|
|
|
|
|
|
1 re 1 1 |Sets, displays, or resets |
Verify | |lstartcoljendcol]| |verification. An asterisk (*) |
| 1 | * | |indicates the logical record |
4 |
|

|

|

|

|

|

{

|

|

|

|

1

|

|

|

|

|

|

|

|

|

|

|

|

{

1

]
LL 4 4 l|length.

{Assigns to X or Y the given
|EDIT subcommand or executes
|the previously assigned

| subcommand n times.

F——=n
=
[— |

|Sets or displays the columns
|between which editing is to
| take place.

|

|

| S~
o ——

-~

|Displays the last EDIT
| subcommand, except = or 2.

nnnnn [text] | Locates the line specified by
nnnnnnnn |the given line number and
|inserts text, if given.

|Duplicates the current line n
{times. $DUP is an edit macro.
|
|

$MOVE n { Up m } {Moves n lines up or down m

$DUP | n
1

Fem—n
S

Down m |lines. $MOVE is an edit macro.|
TO label | {

J

|
|
|
|
|
|
|
|
|
1
!
|
|
|
|
|
|
|
|
|
1
|
|
|
|
(
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
(
1
|
|
(
(
|
!
|
|
[N

Figure 7. Summary of EDIT Subcommands and Macros (Part 4 of #)

102 IBM VM/370: CMS User's Guide

Section 6. Introduction to the EXEC Processor

An EXEC 1is a CMS file that «contains executable statements. The
statements may be CMS or CP commands or EXEC control statements. The
execution can be conditionally controlled with additional EXEC
statements, or it may contain no EXEC statements at all. In its simplest
form, an EXEC file may contain only one record, have no variables, and
expect no arguments to be passed to it. In its most complex form, it can
contain thousands of records and may resemble a program written in a
high-level programming language. As a CMS wuser, you should becone
familiar with the EXEC processor and use it often to tailor CMS commands
to your own needs, as well as to create your own commands.

The following is an example of a simple EXEC procedure that might be
named RDLINKS EXEC:

CP LINK DEWEY 191 291 RR DEWEY
CP LINK LIBRARY 192 292 RR DEWEY
ACCESS 291 B/A

ACC 292 C/A

When you enter
rdlinks
each command line contained in the file RDLINKS EXEC is executed.

You could also create an EXEC procedure that functions 1like a
cataloged procedure, and set it up to receive an argument, so that it
executes somewhat differently each time you invoke it. For example, a
file named ASM EXEC contains the following:

ASSEMBLE &1
PRINT &1 LISTING
LOAD &1

START

If you invoke the EXEC specifying the name of an assembler language
source file, such as

asm myprog
the procedure executes as follows:

ASSEMBLE MYPROG

PRINT MYPROG LISTING

LOAD MYPROG

START
The variable &1 in the EXEC file 1is substituted with the argument you
enter when you execute the EXEC. As many as 30 arguments can be passed

to an EXEC in this manner; the variables thus set range from &1 through
£30.

CREATING EXEC FILES

EXEC files can be created with the CMS Editor, by punching cards, or by
using CMS commands or programs. When you create a file with the editor,

Section 6. Introduction to the EXEC Processor 103

records are, by default, variable-length with a logical reccrd length of
80 characters. EXEC can process variable 1length files of up to 130
characters. To can create a variable-length EXEC file larger than 80
characters, use the LRECL option of the EDIT command:

edit new exec a (lrecl 130

To convert a variable-length file to a fixed-length file, you can
edit the EXEC file and issue the subcommand

recfmn £
Oor, you can use the COPYFILE command:
copyfile 0ld exec a (recfm f

If you use fixed-length EBXEC files, you should be aware that the EXEC
interpreter only processes the first 72 characters of each record in a
fixed-length file, regardless of the record length. You can, however,
enter command or data 1lines that are longer than than 72 characters to
be processed by using the &BEGSTACK, EBEGTYPE, &BEGPUNCH, and &BEGEMSG
control statements preceding the line(s) you want to be processed. If
you specify &BEGPUNCH ALL, EXEC processes lines up to 80 characters
long; if you specify EBEGTYPE ALL, &BEGSTACK ALL, or &BEGEMSG ALL, EXEC
processes lines up to 130 characters.

In variable-length EXEC files, there are no such restrictions; lines
up to 130 characters are processed in their entirety.

Two CMS commands create EXEC files. One is LISTFILE, which «can be
invoked with the EXEC option; it creates a file named CMS EXEC. The uses
of CMS EXEC files are discussed under the heading "CMS EXECs and How To
Use Them." The CMS/DOS command LISTIO creates an EXEC file named
$LISTIO EXEC, which creates records for each of the system and

programmer logical unit assignments. The LISTIC command and the $LISTIO
EXEC are described in "Section 9. Developing DOS Programs Under CHMS."

INVOKING EXEC FILES

EXEC procedures are invoked when you enter the filename of the EXEC
file. You can precede the filename on the command 1line with the CMS
coamand, EXEC. For example:
exec test type list
where TEST is the filename of the EXEC file and TYPE and LIST are
arguments (&1, &2, and so on) you are passing to the EXEC. For example,
an EXEC named PREPEDIT would be executed when you entered either:
prepedit newfile replace
exec prepedit newfile replace
You must precede the EXEC filename with the EXEC command when:
e You invoke an EXEC from within another EXEC.

e You invoke an EXEC from a program.

e You have the implied EXEC function set off for your virtual machine.

104 IBM VM/370: CMS User's Guide

The implied EXEC function is controlled by the SET command. If you
issue the command

set impex off

then you must use the EXEC command to invoke an EXEC procedure. The
default setting is ON; you almost never need to change it.

There is one EXEC file that you never have to specifically invoke.
This is a PROFILE EXEC, which is automatically executed after you load
CMS, wvhen your A-disk is accessed. PROFILE EXECs are discussed next.

PROFILE EXECs

A PROFPILE EXEC nmust have a filename of PROFILE. It can contain the CP
and CMS commands you normally issue at the start of every terminal
session. For example:

e Commands that describe your terminal characteristics, such as

CP SET LINKEDIT ON
SET BLIP *

SET RDYMSG SMSG
SYNONYM MYSYN

e Commands that spool your printer and punch for particular classes or
characteristics:

CP SPOOL E CLASS S HOLD

e Commands to initialize macro and text 1libraries that you commonly
use:

GLOBAL MACLIB OSMACRO CMSLIB
GLOBAL TXTLIB PRIVLIB

e Commands to access disks that are a permanent part of your
configuration:

ACCESs 196 B

A PROFILE EXEC file that contains all of these commands might look
like this:

8CONTROL OFF

CP SET LINEDIT ON

CP SPOOL E CLASS S HOLD

SET RDYMSG SMSG

SET BLIP *

SYNONYM MYSYN

GLOBAL MACLIB OSMACRO CMSLIE
GLOBAL TXTLIB PRIVLIB

ACCESS 196 B

6CONTROL OFF is an EXEC control statement that specifies that the CP
and CMS command lines are not to be displayed on your terminal before
they execute.

A PROFILE EXEC can be as simple or as complex as you require. As an

EXEC £ile, it can contain any valid EXEC control statements or CMS
comnands. The only thing that makes it special is its filenane,

Section 6. Introduction to the EXEC Processor 105

PREOFILE, which causes it to be executed the first time you press the
Return key after loading CHMS.

EXECUTING YOUR PROFILE EXEC

Usually, the first thing you do after loading CMS is to type a CMS
command. When you press the Return key to enter this command or if you
enter a null line, CMS searches your A-disk for a file with a filenane
of PROFILE and a filetype of EXEC. If such a file exists, it is
executed before the first CMS command you enter is executed. Because
you do not do anything special to cause your PROFILE EXEC to execute,
you can say that it executes "automatically."

You can prevent your PROFILE EXEC from executing automatically by
entering

access (noprof)
as the first CMS command after you IPL CMS. You can enter:

profile
at any time during a CMS session to execute the PROFILE EXEC, if you had
accessed your A-disk without it, or if you had made changes to it and

wanted to execute it, or if you had changed your virtual machine and
wanted to restore its original characteristics.

CMS EXECs and How To Use Them

A file named CMS EXEC is created when you use the EXEC option of the
LYSTFILE command, for example

listfile pr* document a (exec

The usual display that results from this LISTFILE command is a list of
all the files on your A-disk with a filetype of DOCUMENT that have
filenames beginning with the characters "PR". CMS, however, creates a
CHS EXEC file that contains a record for each file that would be listed.
The records are in the format:

€1 &2 filename filetype filemode

Column 1 is blank. Now, if you have the following files on your A-disk:

PRFILE1 DOCUMENT
PRFILE2 DOCUMENT
PRFILE3 DOCUMENT
PRFILEY4 DOCUMENT

The CMS EXEC file would contain the records:
€1 &2 PRFILE1 DOCUMENT A1
&1 &2 PRFILE2 DOCUMENT A1l

€1 62 PRFILE3 DOCUMENT A1
€1 62 PRFILE4 DOCUMENT At

106 IBM VM/370: CMS User's Guide

In the preceding lines, &1 and &§2 are variables that can receive values
from arguments you pass to the EXEC when you execute it. For example,
if you execute this CMS EXEC by issuing:

cns disk dump

the EXEC interpreter substitutes, on each line, the variable &1 with the
DISK and the variable &2 with DUMP and executes the commands:

DISK DUMP PRFILE1 DOCUMENT A1
DISK DUMP PRFILE2 DOCUMENT A1
DISK DUMP PRFILE3 DOCUMENT A1
DISK DUMP PRFILE4 DOCUMENT A1

You can wuse this technique to transfer a number of files to another
user., You should remember to spool your punch with the CONT option
before you execute the EXEC, so that all of the files are transferred as
a single spool file, for example:

cp spool 4 cont library
then, after executing the EXEC file, close the punch:

cp spool d nocont close

If you pass only one argument to your CMS EXEC file, the variable &2
is set to a null string. For example,

Cms erase
executes as

ERASE PRFILE1 DOCUMENT A1

ERASE PRFILE2 DOCUMENT ‘A1

ERASE PRFILE3 DOCUMENT A1l

ERASE PRFILEY4 DOCUMENT A1

You could also use a CMS EXEC to obtain a listing of files on a

virtual disk. If you want, you can use one of the other LISTFILE command
options in conjunction with the EXEC option to get more information
about the files listed. For example,

listfile * * a (exec date
produces a CMS EXEC that contains, in addition to the filename,
filetype, and filemode of each file 1listed, the file format and size,
and date information. You can then use the PRINT command to obtain a
printed copy:

print cms exec

Before printing this file, :you may want +to use the SORT command to

sort the list into alphabetic order by filename, by filetype, or both,
for example ;

sort cms exec a cmssort exec a
When you are prompted to enter sort fields, you can enter

1 26

The file CMSSORT EXEC that is created contains a completely alphabetical
list.

Section 6. Introduction to the EXEC Processor 107

MODIFYING CMS EXECS

A CMS EXEC is like any other CMS file; you can edit it, erase it, rename
it, or change it. If you have created it to catalog a particular group
of files, you might want to rename it; each time you wuse the LISTFILE
command with the EXEC option a CMS EXEC is created, and any old CMS EXEC
is erased. To rename it, you can use the CMS RENAME command, or, if you
are editing it, you can rename it when you file it:

edit cms exec
input &control off
file prfile exec

You might also want to edit a CMS EXEC to provide it with more
numeric variables, for example:

edit cms exec

input &control off

input cp spool printer class s cont
change salzal &3 &4 &5 &6/ *

input cp spool printer nocont
input cp close printer

file prfile exec

prfile print % (cc

When this EXEC is executed, the variable &1 is substituted with PRINT,
the variable £§2 is set to a null string (the special character &
indicates that you are not passing an argument to it), and &3 and &4 are
set to the PRINT command option (CC, so that the files in the EXEC print
with carriage control. The CP commands that are inserted ensure that
the files print as a single spool file, and not individually.

Summary of the EXEC Language Facilities

The EXEC processor, or interpreter, recognizes keywords that begin with
the special character ampersand (&). Keywords may indicate:

control statements
Built-in functions
special variables

Arguments

e o 0 o

You may also define your own variables in an EXEC file; the EXEC
interpreter can process them as long as they begin with an ampersand.
The following pages briefly discuss the kinds of things you can do with
an EXEC, introduce you to the control statements, built-in functions,
and special variables, and give some examples of how to use the EXEC
processor. If you want more information on writing EXEC procedures, see
"part 3. Learning To Use EXEC." For specific information on the format
and usage rules for any EXEC statement or variable, consult the VM/370:
CMS command and Macro Reference.

In general the following rules apply to entering lines into an EXEC
procedure:

1. Most input lines (with a few exceptions) are scanned during
execution of the EXEC. Every word on a line is padded or truncated

108 IBM VM/370: CMS User's Guide

to fit into an 8-character "token." So, for example, if you enter
the EXEC control statement

&ttype today is wednesday
when this EXEC is executed, the line is displayed at your terminal:
TODAY IS WEDNESDA

The lines that are not tokenized are those +that begin with an *
(and are considered comments), and those that follow an &BEGEMSG,
&BEGPUNCH, &BEGSTACK, or &BEGTYPE control statement, up to an SEND
statement. ‘

2. You can enter input lines beginning in any colunmn. The only time
that you must enter an EXEC line beginning in column 1 is when you
are using the &END control statement to terminate a series of lines
being punched, stacked, or typed.

ARGUMENTS AND VARIABLES

Most EXEC processing is contingent on the value of variable
expressions. A variable expression in an EXEC is a symbol that begins
with an ampersand (). When the EXEC interpreter processes a line and
encounters a variable symbol, it substitutes the variable with a
predefined value, if the symbol has been defined. symbols can be
defined in three ways: (1) when passed as arguments to the EXEC, (2) by
assignment statements, (3) interactively, as a result of a SREAD ARGS or
EREAD VARS control statement.

You can pass arguments to: EXEC files when you invoke them. Each
argument you enter is assigned a variable name: the first argument is
€1, the second is &2, the third is &3, and so on. You can assign values
for up to 30 variables this way. Por example, if an EXEC is invoked:

scan alpha 2 notype print

the variable §1 has a value of ALPHA, the variable &2 has a value of 2,
€3 is NOTYPE and &4 is PRINT. These values remain in effect until you
change then.

You can test the arquments passed in several ways. The special
variable §INDEX contains the -number of arguments received. Using the
example SCAN ALPHA 2 NOTYPE PRINT, the statement

&IF &INDEX EQ 4 &GOTO -SET

would be true, since four arguments were entered, so a branch to the
label ~SET is taken.

You can change the values of arquments or assign values using the
&ARGS control statement. For example,

6§IF GINDEX EQ O &EARGS A B C

assigns the values A, B, and C to the variables &1, &2, and &3 when the
EXEC is invoked without any arguments.

Use the &READ ARGS control statement to enter arguments
interactively. For example, if your EXEC file contains the line

&READ ARGS

Section 6. Introduction to the EXEC Processor 109

vhen this 1line is executed, the EXEC issues a read to your virtual
machine so that you can enter up to 30 arguments, to be assigned to the
variables &1, &2, and so on.

ASSIGNMENT STATEMENTS

User-defined variable names begin with an ampersand (¢) and contain up
to seven additional characters. These variables can contain numeric or
alphameric data. You define and initialize EXEC variables in assignment
statements. In an assignment statement, the value of the expression on
the right side of the equal sign is assigned to the variable named on
the left of the equal sign. For exanmple,

&A = 35

is an assignment statement that assigns the numeric value 35 to the
variable symbol &A. A subsequent assignment statement might be:

€B = &A + 10

After this assignment statement executes, the value of &B would be 35
plas 10, or 45.

You can use the &READ control statement to assign variable names
interactively. For example, when the statement

SREAD VARS ENAME EAGE
is executed, the EXEC issues a read to your virtual machine, and you can

enter a line of data. The first two words, or tokems, you enter are
assigned to the variable symbols ENAME and &AGE, respectively.

Null Variables

If you use a variable name that has not been defined the variable symbol
is set to a null string by the EXEC processor when the statement is
executed. For example, if you have entered only two arguments on the
EXEC command line, then the statement

EIF &3 EQ CONT &ERROR &CONTINUE
is interpreted

&IF EQ CONT &ERROR &CONTINUE
&FRROR and &CONTINUE are recognized by EXEC as control statements.
since &3 is undefined, however, it is replaced by blanks and the
resulting 1line produces an error during EXEC processing. You can
prevent the error, and allow for null .arqguments or variables, by
concatenating some other character with the variable. A period is used
most frequently:

&IF .63 BEQ .CONT &ERROR &CONTINUE
If &3 is undefined when this line is scanned, the result is

&IF . EQ .CONT &EERROR &CONTINUE

which is a valid control statement line.

110 IBM VM/370: CMS User's Guide

BUILT-IN FUNCTIONS AND SPECIAL VARIABLES

The EXEC built-in functions are similar to those of higher-level
languages. You can use the EXEC built-in functions to define variable
symbols in an EXEC procedure.

Figure 8 summarizes the built-in functions. It shows, given the
variable &A, the values resulting in a variable &B when a built-in
function is used to assign its value. Notice that all of the built-in
functions are used on the right-hand side of assignment statements. Only
the SLITERAL built-in function can be used in control statements, for
example:

ETYPE SLITERAL &A

L 1
| Punction | ©Usage | Example | &B |
| |
| I | 62 = 123 t |
| ECONCAT | Concatenates tokens into a | | i
| | single token. | &B = SCONCAT &A 55 | 12355]
EDATATYPE	Assigns the data type (NUM i		
	or CHAR) to the wvariable.	6B = &DATATYPE &A	NUM
ELENGTH	Assigns the length of a		
	token to a variable.	&6B = SLENGTH &A	3
SLITERAL	Prohibits substitution of a		
	variable symbol.	6B = ELITERAL &A { €A	
&SUBSTR	Extracts a character string		
	from a token.	6B = &SUBSTR &A 2 2	23 }
L . J

Piqure 8. summary of EXEC Built-in Functions

FLOW CONTROL IN AN EXEC

An BXEC is processed line by line: if a statement is encountered that
passes control to another 1line in the procedure, execution continues
there and each 1line is, again, executed sequentially. You can pass
control with an §GOTO control statement:

&§GOTO -BEGIN

where BEGIN is a label. A1l 1labels in EXEC files must begin with a
hyphen, and must be the first token on a line. For example,

-LOOP

A label may have control statements or commands following it, for
example

-HERE &CONTINUE

which indicates that the processing is to continue with the next line,
or

-END EEXIT
The &EXIT control statement indicates that the EXEC processor should

terminate execution of the EXEC and return control to CMS. You can also
specify a return code on the &EXIT control statement:

Section 6. Introduction to the EXEC Processor 111

&EEXIT 6

results in a " (00006)" following the "R" in the CMS Ready message. If
you invoke a CMS command from the EXEC, you can specify that the return
code from the CMS command be used:

&EXIT &RETCODE

Since the ERETCODE special variable is set after each CMS command that
is executed, you can test it after any command to decide whether you
wvant execution to end. For example, you could use the 8IF control
statement to test it:

EIF GSRETCODE NE 0 &EXIT &RETCODE

"EEXIT &RETCODE" places the value of the CMS return -code in the CMS
Ready message. You could place a 1line similar to the above following
each of your CMS command lines, or you could use the &ERROR control
statement, that will cause an exit as soon as an error is encountered:

G ERROR &EXIT ERETCODE

or you could use the &ERROR control statement to transfer control to
some other part of your EXEC:

GERROR &GOTO -CHECK

Another way to transfer control to another line is to use the §SKIP
control statement:

&SKIP 10

transfers control to a 1line that is 10 lines below the &SKIP line. You
can transfer control above the current line as well:

&IF &6X NE &Y &SKIP -3

Transferring control with &SKIP is faster, when an EXEC is executing,
than it is with &GOTO, but modifying your EXEC files becomes more
difficult, particularly when you add or delete many lines.

You can use combinations of &IF, §GOTO, and 8§SKIP to set up loops in
an EXEC. For example:

&X = 1

6IF &X = 4 E&GOTO -ENDPRT
PRINT FILE&X TEST A

X = 8X + 1

&SKIP -3

~-ENDPRT

Or, you can use the &LOOP control statement:

&§X = 1

&§LOOP 2 &X > 3
PRINT FILE&X TEST
EX = &X + 1
~ENDPRT

112 IBM VM/370: CMS User's Guide

In both of these examples, a loop 1is established +to print the files
FILE1 TEST, FILE2 TEST, and FILE3 TEST. &X is initialized with a value
of 1 and then incremented within the loop. The loop executes until the
value of &X is greater than 3. As soon as this condition is met, control
is passed to the label -ENDPRT.

COMPARING VARIABLE SYMBOLS AND CONSTANTS

In an EXEC, you can test whether a certain condition 1is true, and then
perform some function based on the decision. Some examples have already
appeared in this section, such as

ELOOP 3 &X EQ &Y
In this example, the value of the variable &§X is tested for an equal
comparison with the value of the variable &Y. The loop is executed until
the condition (6X equal to &Y) is true.

The logical comparisons you can make are:

Condition Mnemonic Symbol
equal EQ =
not equal NE -=
greater than GT >
less than LT <
greater than

or equal to GE >=
less than or

equal to LE <=

When you are testing a condition in an EXEC file, you can use either the
mnemonic or the symbol to represent the condition:

&IF &A 1T &B &GOTO -NEXT
is the same as

&6IF &A < &B &§GOTO ~-NEXT

DOING I/O WITH AN EXEC

You can communicate with your terminal using the &TYPE and &READ control
statements. Use &§TYPE to display a line at your terminal:

ETYPE ASMBLNG &1 ASSEMBLE

When this line is processed, if the variable §1 has a value of PROG1,
the line is displayed as

ASMBLNG PROG1 ASSEMBLE
Use the &EREAD control statement when you want to be able to enter
data, variables, or control statements into your EXEC file while it is

executing. If you use it in conjunction with an STYPE statement, for
example

&TYPE DO YOU WANT TO CONTINUE ?
EREAD &ANS

Section 6. Introduction to the EXEC Processor 113

you could test the variable &ANS in your EXEC to find out how processing
is to continue.

The §BEGTYPE control statement can be followed by a sequence of lines
you want to be displayed at the terminal. For example, if you want to
display 10 lines of data, instead of using 10 §TYPE control statements,
you could use

&BEGTYPE
line1
line2

line 10
&END

The &ENRD control statement indicates the end of the lines to be typed.
You can also use the &§BEGTYPE control statement when you want to type a
line that contains a word with more than 8 characters im it, for
example:

EBEGTYPE
TODAY IS WEDNESDAY
EEND

The EXEC interpreter, however, does not perform substitutions on lines
entered this way. The lines

&A = DOG

&EBEGTYPE

MY &A IS NAMED FIDDLEFADDLE

EEND
result in the display

MY &A IS NAMED FIDDLEFADDLE
You must use the §TYPE statement when you want to display variable data;
you must use the &BEGTYPE control statement to display words with more
than 8 characters.

To type null or blank 1lines at your terminal (to make output
readable, for example), you can use the &SPACE control statement:

&SPACE 5

Using Your Virtual Card Punch

You can punch lines of tokens into your virtual card punch with the
EPUNCH control statement:

EPUNCH &NAME &TOTAL

When you want to punch more than one 1line of data, or a line that
contains a word of more than 8 characters in it, you should use the
&BEGPUNCH control statement preceding the lines you want to punch, and
follow them with an &END statement. The EXEC processor does not
interpret these lines, however, so any variable symbols you enter on
these lines are not substituted.

114 IBM VM/370: CMS User's Guide

When you punch lines from an EXEC procedure what you are actually
doing is creating a file in your virtual «card punch. To release the
file for processing, you must close the punch:

cp close punch
The destination of the file depends on how you have spooled your punch.
If you have spooled it to yourself, the file is placed in your virtual

card reader, and you can read it onto a virtual disk using the READCARD
command.

Stacking Lines

The EXEC control statements §&STACK and §&BEGSTACK allow vyou to stack
lines in your terminal console, to be executed as soon as a read occurs
in your virtual machine., Stacking is useful when you use commands that
require responses, for example, the SORT command:

&STACK 1 20
SORT INFILE FILE A OUTFILE FILE A

When the SORT command is executed, a prompting message is issued, the
virtual machine read occurs, and the response that you have stacked is
read. If you do not stack a response to this command, your EXEC does
not continue processing until you enter the response from your
terminal.

Stacking is useful in creating edit macros, or when you are editing
files from EXEC procedures.

MONITORING EXEC PROCEDURES

Two EXEC control statements, &CONTROL and &TIME, control how much
information is displayed at your terminal while your EXEC file is
executing. This display is called an execution summary.

Since, usually, you do not receive a CMS Ready message after the
execution of each CMS command in an EXEC, you do not receive the timing
information that is provided with the Ready message. If you want this
timing information to appear, you can specify

&ETIME ON
or you can type the CPU times at particular places by using:
&TIME TYPE

The SCONTROL control statement allows you to specify whether certain
lines or types of information are displayed during execution. By
default, CP and CMS commands are displayed before they are executed. If
you do not wish to see them displayed, you can specify

&CONTROL OFF
You might find it useful, when you are debugging your EXECs, to use

&CONTROL ALL

Section 6. Introduction to the EXEC Processor 115

When you use this form, all EXEC statements, as well as all CP and CMS
commands, are displayed and you can see the variable substitutions being
performed and the branches being taken in a procedure.

Summary of EXEC Control Statements and Special Variables

Figures 9 and 10 summarize
variables.

control statements and special

|&ERROR, &GOTO, and other con-
(ditional branching statements.

116 IBM VM/370: CMS User's Guide

LB L]
| Control Statement | Function |
(|
| &variable = (string IAssigns a value to the symbol |
| ae |Ispecified by &variable; the i
| function lequal sign must be preceded {
| X' XXXXXX |and followed by a blank. |
| {
| &ARGS [arg1 [arg2 ...[arg30]]] |Redefines the variable symbols]|
i 161, §2... with the values of |
I "arg1' ’ 'argz" o0 e p a.nd re— I
| |sets the variable EINDEX. |
| {
| &§BEGEMSG [ALL] |Displays the following lines |
| linei las CMS error messages, without|
i line2 |scanning thenm. |
| . | f
l . | |
| GEND | |
| !
EBEGPUNCH [ALL]	Punches the following lines
1lineil	in the virtual card punch,
1line2	without scanning then.
. i	
.	
&END	
r “ar 1 {Stacks the following lines	
EBEGSTACK	FIFO
line1l ILIFO	¢ 4
line2 L 4]	
.	
I .	
EEND	
€BEGTYPE [ALL]	IDisplays the following lines
line1 Jat the console, without	
line2	scanning thenm.
.	
. (i	
EEND {	
ECONTINUE	Provides a branch address for
L (]
F

igure 9. Summary of EXEC Control Statements (Part 1 of 3)

[P o S e e e o T T e T T s T s S . T o T e T oy T o T S —— —— T — T — " - — " o T o G- o S o - o

Control Statement

| Function

& CONTROL
r 1T r 1T r 1Tr 1
{OFF | |MS6 | ITIME | |RACK |
| ERROR| |NOMSG| |NOTIME| |NOPACK|
|£ﬂ§ ll. 4 L 4 L 4
IALL
L J4

|Sets, until further notice,
|the characteristics of the
Jexecution summary of the EXEC,
jwhich is displayed at the
jconsole.

|

£EMSG mmmnnns [tok1 [...tokn]]

{Displays a line of tokens
|as a CMS error message.

& END

{following an &BEGEMSG,
|&BEGPUNCH, &BEGSTACK, or
| EBEGTYPE control statement.

r]
EERROR | executable-statement|
{ECONTINUE |
[N 4

|Executes the specified
Istatement whenever a CMS
|command returns a nonzero
jreturn code.

r 3
EEXIT |return—code]

|Exits from the EXEC file with
{the given return code.

1
|
|
|
|
|
|
|
|
[
|
|
|
|
{Terminates a series of lines |
{
|
|
|
|
|
|
|
|
|
|
|
i
|
|

1 0 | |
L 4 '
&GOTO (TOP | Transfers control to the top
linenumber lof the EXEC file, to the given|
{-label } tline, or to the line starting |
|with the given label.
&HEX (ON } |Turns on or off hexadecimal
{ggg |conversion.
&IF (tok1 EQ tok2) executable- | Executes the specified
&% NE &% statement |statement if the condition is
&% LT &% |satisfied.
LE |
GT |
GE |
= |
= i
< |
<= |
> |
>= |

ELOOP (n m
-label condition

{ Loops through the following n
|lines, or down to (and includ-
{ing) the line at label, for

|m times, or until the
|condition is satisfied.

—— S — W — T p— — . oy W o = —

&PUNCH [tokt [...tokn]]

{Punches the specified tokens
|to your virtual card punch.

e o s e —

Figure 9.

Section 6.

Summary of EXEC Control Statements (Part 2 of 3)

Introduction to the EXEC Processor 117

T 1
| Control Statement | Function |
| |
} r - |Reads lines from the terminal |
&READ	n	for from the console stack.	
11		ARGS assigns the tokens read	
	ARGS		to the variables &1, &2 ...
	VARS [&varl [...6var17]]i	VARS assigns the tokens read	
L 4	to the specified variable		
{	symbols.		
r -	Transfers control forward or		
€SKIP	n		backward a specified number
111 jof lines.			
I L 4 { (
i			
r 1 {Displays blank lines at the			
&SPACE	n		terminal.
111 {			
(L 4 l			
r T 1	Stacks a line in the terminal		
&STACK [FIFO		tokl1 [... tokn]	
{LIFO		HT	
L 4	RT {		
L 4 (
r 1	Displays timing information		
§&TIME	ON		following the execution of
IOFF		CMS commands.	
	RESET		i
	TYPE		
L 4	l		
I			
&TYPE [tokl [...tokn]]	{Displays a line at the		
] {terminal. |
[N J

Figure 9. Summary of EXEC Control Statements (Part 3 of 3)

118 IBM VM/370: CMS User's Guide

Variable Set By

-

Usage

&n Arguments passed to an EXEC are assigned to User

the variables &1 through &30.
&* EXEC
&%

Test whether all (6%) or any (&3%) of the
arguments passed to EXEC have a particular
value.

Indicates whether the disk access at mode ‘'x! User

is a CMS 0S, or DOS disk, or not accessed

(CMs, 0S, DOS, or KA).

&DISKx

Contains the mode letter of the first read/write User
disk in the CMS search order, or NONE if no

read/write disk is accessed.

&EDISK¥*

&EDISK? Contains the mode letter of the read/write disk User
with the most available space or NOKE, if no
read/write disk is accessed.

User

&§DOS Indicates whether or not the CMS5/DOS environment

is active (ON or OFF).

EXEC

E§EXEC Contains the filename of the EXEC file currently

being executed.

& GLOBAL
the recursion (nesting) level of the EXEC that
is currently executing.

&GLOBALN User

The variables &§GLOBAL1 through &§GLOBAL9 can
contain integral numeric values, and can be
passed among different recursion levels. If
not explicitly set, the variable will have a
value of 1.

Contains the number of arguments passed to EXEC

the EXEC on the command line or the number of

arguments entered as a result of an §ARGS or

&READ ARGS control statement.

&I HDEX

ELINENUM Contains the current line number in the EXEC. EXEC

EREADFLAG Indicates whether (STACK) or not (CONSOLE) EXEC

there are lines.stacked in the terminal input
buffer (console stack).

CHMs

ERETCODE Contains the return code from the most recently

executed CMS command.

EXEC

ETYPEFLAG Indicates whether (RT) or not (HT) output is

|
|
|
|
|
I
l
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
I
|
|
Has a value ranging from 1 to 19, to indicate | EXEC

|
|
|
{
|
|
|
|
I
|
)
|
|
|
|
|
|
|
|
|
|
|
:
being displayed at the console. f
|

I

Contains the name of the EXEC file. User

»
(=4

Variables are assigned values by EXEC but you may modify thenm.
You may not modify these variables.

You may assign a value to this variable but it is reset at the
completion of each CMS command.

l::l#clm 10

it 10

o | o0
s e

INiwicx
e e o S - o D — — . ————— T — o W o o — D mp T S c— . a— —— T e S T — — — o ——— — — —— o — o — —

[P o e T o S s G g T e ST S . G . T e WD e T e T W e T — T —— O — T — D — T — T — T o . gmm . omn S o — — — —

Figure 10. EXEC Special Variables

Section 6. Introduction to the BXEC Processor 119

Section 7. Using Real Printers, Punches, Readers, and Tapes

CMS Unit Record Device Support

CMS supports one virtual card reader at address 00C, one virtual card
punch at address 00D, and one virtual printer at address 00OE. When you
invoke a CMS command or execute a programn that uses one of these unit
record devices, the device must be attached at the virtual address
indicated.

USING THE CP SPOOLING SYSTEM

Any output that you direct to your virtual card printer or punch, or any
output you receive through your card reader, is controlled by the
spooling facilities of the control program (CP). Each output unit is
known to CP as a spool file, and is queued for processing with the srpool
files of other wusers on the VM/370 systen. Ultimately, a spooled
printer file or a spooled punch file may be released to a real printer
or card punch for printing or punching.

The final disposition of a unit record spcol file depends on the
spooling characteristics of your virtual wunit record devices, which you
can alter with the CP command SPOOL. To find out the current
characteristics of your unit record devices you can issue the command:

Cp query ur

You might see, as a response to this, the display:

RDR 00C CL A NOCONT NOHOLPD EOF READY

PUN 00D CL A NOCONT NOHOLD COPY 01 READY
00D FOR CMSGDE DIST 13SCRIPT

PRT OOE CL A CONT HOLD COPY 01 READY

O0OE FOR CMSGDE DIST 13SCRIPT

some of these characteristics, and the ways you can modify them, are
discussed below. When you use the SPOOL command to control a virtual
unit record device, you do not change the status of spool files that
already exist, but rather set the characteristics for subsequent
output. For information on modifying existing spool files, see
®"pAltering Spool Files," below.

CLASS (CL): Spool files, in the CP spool file queue, are grouped
according to class, and all files of a particular class may be processed
together, or directed to the same real output device. The default
values for your virtual machine are set in your VM/370 directory entry,

and are probably the standard classes for your installation.

You may need, however, to change the class of a device if you vant a
particular type of output, or some special handling for a spool file.
For example, if you are printing an output file that requires special
forms, and your installation expects that output to be spooled class Y,
issue the command:

cp spool printer class y

Section 7. Using Real Printers, Punches, Readers, and Tapes 121

All subsequent printed output directed to your printer at virtual
address 00E (all CMS output) is processed as class Y.

HOLD: If you place a HOLD on your printer or punch, any files that you
print or punch are not released to the control program's spooling queue
until you specifically alter the hold status. By placing your output
spool files in a hold status, you can select which files you print or
punch, and you can purge duplicate or unwanted files. To place printer
and punch output files in a hold status issue the commands:

cp spool printer hold
cp spool punch hold

Note: When you issue a SPOOL command for a unit record device, you can
refer to it by its virtual address, as well as by its generic device
type (for example, CP SPOOL E HOLD).

When you have placed a hold status on printer or punch files and you
produce an output file for one of these devices, CP sends you a message
to remind you that you have placed the file in a hold:

PRT FILE xxxx FOR userid COPY xx HOLD
If, however, you have issued the command
cp set msg off
then you do not receive the message.

When you place a reader file in a hold status, then the file remains
in the card reader until you remove the hold status and read it, or you
purge it.

COPY: If you want multiple copies of a spool file, you should use the
COPY operand of the SPOOL command:

cp spool printer copy 10

If you enter this command, then all subsequent printer files that you
produce are each printed 10 times, until you change +the COPY attribute
of your printer.

FOR: You can spool printed or punched output under another userid's name
by using the FOR operand of the SPOOL command. For example, if you enter

cp spool printer for charlie

Then, all subsequent printer files that you produce have, on the output
separator page, the userid CHARLIE and the distribution code for that
user. The spool file is then under the control of that wuser, and you
cannot alter it further.

CONT, NOCONT: You can print or punch many spool files, but have them
print or punch as one continuous spool file if you use the CONT operand
on the SPOOL command. For example, if you issue the following sequence

of commands:

cp spool punch cont to brown
punch asm1 assemble

punch asm2 assemble

punch asm3 assemble

cp spool punch nocont

cp close punch

122 IBM VM/370: CMS User's Guide

Then, the three files ASM1 ASSEMBLE, ASM2 ASSEMBLE, and ASM3 ASSEMELE,
are punched to user BROWN as a single spool file. When user BROWN reads
this file onto a disk, however, CMS creates separate disk files.

TO: When you spool your printer or punch to another userid, all output
from that device is transferred to the virtual card reader of the userid
you specify. When you are punching a CMS disk file, as 1in the example
above, you should use the TO operand of the SPOOL command to specify the
destination of the punch file.

You can also use this operand to place output in your own virtual
card reader by using the * operand:

cp spool printer to *

After you enter this command, subsequent printed output is placed in
your virtual card reader. You might use this technique as an alternative
way of preventing a printer file from printing, or, if you choose to
read the file onto disk from your reader, of creating a disk file from
printer output.

Similarly, if you are creating punched output in a program and you
want to examine the output during testing, you could enter:

cp spool punch to *

so that you do not punch any real cards or transfer a virtual punch file
to another user.

ALTERING SPOOL FILES

After you have requested that VM/370 print or punch a file, or after you
have received a file in your virtual card reader and before the file is
actually printed, punched, or read, you can alter some of its
characteristics, change its destination, or delete it altogether.

Every spool file in the VM/370 system has a unique U4-digit number
from 0 to 9900 assigned to it, called a spoolid. You can use the spoolid
of a file to identify it when you want to do something to it. You can
also change a group of files, by specifying that all files of a
particular class be altered in some way, OT you can manipulate all of
your spool files for a certain device at the same time.

The CP commands that allow you to manipulate spool files are CHANGE,
ORDER, PURGE, and TRANSFER. In addition, you can use the CP QUERY
command to list the status and characteristics of spool files associated
with your userid.

When you use any of these commands to reference spool files of a
particular device, you have the choice of referring to the files by
class or by spoolid. You can also specify ALL. For example, if you
enter the command

cp query printer all
you might see the display:
ORIGINID FILE CLASS RECDS CPY HOLD DATE TIME NAME TYPE DIST

SCARLET 0211 D PRT 000140 01 USER 07,09 10:25:23 TARA FILE BINO15
SCARLET 0245 A PRT 000026 01 NONE 07,09 10:25:41 CMSLIB MACLIB BINO15

Section 7. Using Real Printers, Punches, Readers, and Tapes 123

Until any of these files are processed, or in the case of files in the
hold status, until they are released, you can change the spool file name
and spool file type (this information appears on the first page or first
card of output), the distribution code, the number of copies, the class,
or the hold status, using the CP CHANGE command. For example,

cp change printer all nohold
changes all printer files that are in a hold status to a nohold status.
The CP CHANGE command can also change the spooling class, distribution
code, and so on.

If you decide that you do not want to print a particular printer
file, you can delete it with the CP PURGE command:

cp purge printer 7615
After you have punched a file to some other user, you cannot change
its characteristics or delete it unless you restore it to your own
virtual reader. You can do this with the TRANSFER command:

cp transfer all from usera

This command returns to your virtual card reader all punch files that
you spooled to USERA's virtual card reader.

You can determine, for your reader or printer files, in what order
they should be read or printed. If you issue the command:

cp order printer 8195 6547

Then, the file with spoolid of 8195 1is printed before the file with a
spoolid of 6547.

The CP spooling system is very flexible, and can be a useful tool, if
you understand and use it properly. The VM/370: CP Command Reference for
seneral Users contains complete format and operand descriptions for the
CP commands you can use to modify spool files.

JSING YOUR CARD PUNCH AND CARD READER IN CMS

The CMS READCARD command reads cards from your virtual card reader at
address 00C. Cards can be placed in the reader in one of two ways:

o By reading real punched cards into the system card reader. A CP ID
card tells the CP spooling system which virtual card reader is to
receive the card images.

o By transferring a file from another virtual machine. Cards are
transferred as a result of a virtual punch or printer being spooled
with the TO operand, or as a result of the TRANSFER command. Virtual
card images are created with the CMS PUNCH command, or £from user
programs or EXEC procedures.

Using Real Cards

XIf you have a deck of punched cards that you want read into your virtual
machine card reader, you should punch, preceding the deck, a CP ID card:

ID HAPPY

124 IBM VM/370: CMS User's Guide

If you plan to use the READCARD command to read this file onto a CMS
disk, you can also punch a READ control card that specifies the filenanme
and filetype you want to have assigned to the file:

:READ PROG6 ASSEMBLE

Then, to read this file onto your CMS A-disk, you can enter the command
readcard *

If a file named PROG6 ASSEMBLE already exists, it is replaced.

If you do not punch a READ control card, you can specify a filename
and filetype on the READCARD command:

readcard prog6 assemble

If this spool file contained a READ control card, the card is not read,
but remains in the file; if you edit the file, you can wuse the DELETE
subcommand to delete it.

If a file does not have a READ control card, and if you do not
specify a filename and filetype when you read the file, CMS names the
file READCARD CMSUT1.

If you are reading many files into the real system card reader, and
you want to read them in as separate spool files (or you want to spool
them to different userids), you must separate the cards and read the
decks onto disk individually. The CP system, after reading an ID card,
continues reading until it reaches a physical end of file.

Using Your Virtual Card Punch

When you use the CMS PUNCH command to punch a spool file, a READ control
card is punched to precede the deck, so that it can be read with the
READCARD command. If you do not wish to punch a READ control card (also
referred to as a header card), you can use the NOHEADER option on the
PUNCH command:

punch prog8 assemble * (noheader

You should use the NOHEADER option whenever you punch a file that is not
going to be read by the READCARD command.

The PUNCH command can only punch records of up to 80 characters in
length. If you need to punch or to transfer to another user a file that
has records greater than 80 characters in length, you can use the DISK
DUMP command:

disk dump prog9 data

If your virtual card punch has been spooled to another user, that user
can read this file using the DISK LOAD command:

disk load
Unlike the READCARD command, DISK LOAD does not allow you to specify a
file identification for a file 7you are reading; the filename and
filetype are always the same as those specified by the DISK DUMP comma nd
that created the spool file.

A card file created by the DISK DUMP command can only be read onto
disk by the DISK LOAD command.

Section 7. Using Real Printers, Punches, Readers, and Tapes 125

Using the MOVEFILE Command

fou can use the MOVEFILE command, in conjunction with the FILEDEF
command, to place a file in your virtual card reader, or to copy a file
from your card reader to another device. For example,

cp spool punch to *

filedef punch punch

filedef input disk coffee exec al
movefile input punch

the file COFFEE EXEC A1 is punched to your virtual card punch, (in
card-image format) and spooled to your own virtual reader.

Creating Files Using Your Reader and Punch

hpart from the procedures shown above, that transfer whole files with
one or two commands, there are other methods you can use to create files
using your virtual card punch. From a program or an EXEC file, you can
punch one line at a time to your virtual punch. Then use CLOSE command
to close the spool file:

cp close punch

Depending on how the punch was spooled (the TO setting), the virtual
punch file is either punched or transferred to a virtual card reader.

FUNCHING CARDS USING I/0 MACROS: If you write an 0S, DOS, or CMS progranm
that produces punched card output, you should make an appropriate file
definition. If you are an O0S user, you should use the FILEDEF command
to define the punch as an output data device; if you are a DOS user, you
must use the ASSGN command. If you are using the CMS PUNCHC macro, the
punch is assigned for you. The spooling characteristics of your virtual
punch control the destination of the punched output.

PUNCHING CARDS FROM AN EXEC: The EXEC facilities provide two control
statements for punching cards: &PUNCH, which punches a single 1line to
the virtual card punch, and &BEGPUNCH, which precedes a number of lines
to be punched. You can also, in an EXEC, wuse the commands PUNCH and
DISK DUMP to punch CMS files.

Handling Tape Files in CMS

There are a variety of tape functions that you can perform in CMS, and a
numnber of commands that you can use to controcl tape operations or to
read or write tape files. One of the advantages of placing files on
tapes is portability: it is a convenient method of transferring data
from one real computing system to another. In CHMS, you can use tapes
created under other operating systems. There are also two CMS commands,
TAPE and DDR, that create tape files in formats unique to CMS, that you
can use to back up minidisks or to archive or transfer CMS files.

Under VM/370, virtual addresses 181 through 184 are usually reserved
for tape devices. In most cases, you can refer to these tapes in CMS by
using the symbolic names TAP1 through TAP4. In any event, before you
can use a tape, you must have it mounted and attached to your virtual

126 IBM VM/370: CMS User's Guide

machine by the system operator. When the tape is attached, you receive
a message. For example, if the operator attaches a tape to your virtual
machine at virtual address 181, you receive the message

TAPE 181 ATTACHED

The various types of tape files, and the commands and programs you
can use to read or write them are:

TAPE Command: The CMS TAPE command creates tape files from CMS disk
files. They are in a special format, and should only be read by the CMS
TAPE LOAD command. For examples of TAPE command operands and options,

see "Using the CMS TAPE Command."

TAPPDS Command: The TAPPDS command creates CMS disk files from 0S or DOS
sequential tape files, or from OS partitioned data sets.

TAPEMAC Command: The TAPEMAC command creates CMS MACLIB files <from 0S

macro libraries that were unloaded onto tape with the IEHMOVE utility
progranm.

MOVEFILE Command: The MOVEFILE command can copy a sequential tape file
onto disk, or a disk file onto tape. Or, it can move files from your
card reader to tape, or from tape to your card punch.

User Programs: You can write programs that read or write sequential tape
files using 0S, DOS, or CMS macros.

Access Method Services: Tapes created by the EXPORT function of Access
Method Services can be read only using the Access Method Services IMPORT
function. Both the IMPORT and EXPORT functions can be accomplished in
CMS using the AMSERV command. The Access Method Services REPRO function
can also be used to copy sequential tape files.

DDR Program: The DDR program, invoked with the CMS command DDR, dumps

the contents of a virtual disk onto tape, and should be used to restore
such files to disk.

USING THE CMS TAPE COMMAND

The CMS TAPE command provides a variety of tape handling functions. It
allows you to selectively dump or load CMS files to and from tapes, as
well as to position, rewind, and scan the contents of tapes. You can
use the TAPE command to save the contents of CMS disk files, or to
transfer them from one VM/370 system to another. The following example
shows how to create a CMS tape with three tape files on it, each
containing one or more CMS files, and then shows how you, or another
user, might use the tape at a later time.

The example is in the form of a terminal session and shows, in the
“Terminal Display"” column, the commands and responses you might see.
System messages and responses are in uppercase, and user-entered
commands are in lowercase. The "Comments" column provides explanations
of the commands and responses.

Section 7. Using Real Printers, Punches, Readers, and Tapes 127

TAPE 181 ATTACHED

listfile
R;

cms tape dump

TAPE DUMP PROG1 ASSEMBLE A1
DUMPING.....

PROG1 ASSEMBLE A1

TAPE DUMP PROG2 ASSEMBLE A1
DUMPING.c.s .

PROG2 ASSEMBLE A1

TAPE DUMP PROG3 ASSEMBLE A1

* assemble a (exec

TAPE DUMP PROG9 ASSEMBLE A1
DUMPING.....

PROGY ASSEMBLE A1

R;

tape wtn

R;

tape dump mylib maclib a
DUMPING.....
MYLIB MACLIB
R;

tape dump cmslib maclib *
DUMPING.....
CMSLIB MACLIB
R;

tape wtm

R;

tape dump mylib txtlib a
DUMPING.....

Al

52

MYLIB TXTLIB A1l
i H

tape wtn 2

R;

tape rew

R

tape scan (eof 4
SCANNING....

PROG1 ASSEMBLE A1
PROG2 ASSEMBLE A1
PROG3 ASSEMBLE A1
PROGUY ASSEMBLE A1
PROGS ASSEMBLE A1
PROG6 ASSEMBLE A1
PROG?7 ASSEMBLE A1
PROGS ASSEMBLE A1
PROGY ASSEMBLE A1
END-OF-FILE OR END-OF-TAPE
MYLIB MACLIB Al
CMSLIB MACLIB S2
END-OF~FILE OR END-OF-TAPE
MYLIB TXTLIB A1l

END-OF-FILE OR END-OF-TAPE
END-CF-FILE OR END-OF-TAPE
Rs

#cp det 181

TAPE 181 DETACHED

128 IBM VM/370: CMS User's Guide

Comments

Message indicates that the tape is
attached.

Prepare to dump all ASSEMBLE files
by using the LISTFILE command EXEC
option; then execute the CMS EXEC
using TAPE and DUMP as arguments.

The TAPE command responds to each
TAPE DUMP by printing the file
identification of the file being
dumped.

The last file, PROG9 ASSEMBLE, is
dumped.

The TAPE command writes a tape mark
to indicate an end-of-file.

Two macro libraries are dumped,
by specifying the file identifiers.

Another tape mark is written.

A TEXT library is dumped.

Two tape marks are written to
indicate the end of the tape.
The tape is rewound.

The tape is scanned to verify
that all of the files are on it.

Tape mark indication.

Two tape marks indicate the end
of the tape.

The CP DETACH command rewinds
and detaches the tape.

* The tape created above is going

X
sk ok KoKk oK

TAPE 181 ATTACHED

tape load prog4 assemble
LOADING.....®

PROGU ASSEMBLE A1

R3

tape scan’
SCANNING....
PROGS ASSEMBLE A1

PROG6 ASSEMBLE A1

PROG7 ASSEMBLE A1

PROGS ASSEMBLE A1
END-OF-FILE OR END-OF-TAPE
R3

tape scan

SCANVING.,..

MYLIB. = MACLIB At
CHMSLIB MACLIB Ly
END-OF-FILE OR END-OF-TAPE
R;

tape bsf 2

R;

tape fsf

R;

tape load (eof 2
LOADINGecses

MYLIB MACLIB Al
CMSLIB MACLIB A2

MYLIB TXTLIB A1
END-OF-FILE OR END-OF-TAPE

Ro
gcp detach 181
TAPE 181 DETACHED

TAPE LABELS IN CMS

CMS cannot read tape labels

When you want to read

operating systeams, you have to use the
tape following the tape label:

tape fsf

If you do not forvard

— s e e s S et e

to be read.

Message indicating the tape is
attached.

One file is to be read onto disk.

The TAPE command displays the
nane of the file loaded. Any
existing file with the same
filename and filetype is erased.

The remainder of the first tape
file is scanned.

Indication of end of first tape file.

The second tape file is scanned

The tape is backed up and
postioned in front of the
last tape file.

The tape is forward spaced past
the tape mark.

The next two tape files are
going to be read.

The tape is detached.

on tapes created under either 0S or DOS.
a tape file created using either of these

CMS TAPE command to position the

space the tape, you receive an end-of-file

indication the first time you attempt to read the tape.

Section 7. Using Real Printers, Punches, Readers, and Tapes

129

THE MOVEFILE COMMAND

The MOVEFILE command can copy sequential tape files into disk files, or
sequential disk files onto tape. It can be particularly useful when you
need to copy a file from a tape and you do not know the format of the
tape.

To use the MOVEFILE command, you must first define the input and
output files using the FILEDEF command. For example, to copy a file fronm
a tape attached to your virtual machine at virtual address 181 to a CMs
disk, you would enter:

filedef input tap1
filedef output disk tape file a
movefile input output

This sequence of commands creates a file named TAPE FILE Al. Then use
CHS commands to manipulate and examine the contents of the file.

TAPES CREATED BY 0S UTILITY PROGRAMS

The CMS command TAPPDS can read O0S partitioned and sequential data sets
from tapes created by the IEBPTPCH, IEBUPDTE, and IEHMOVE utility
programs. When you use the TAPPDS command, the O0OS data set is coried
into a CMsS disk file, or in the case of partitioned data sets, into
nultiple disk files.

ILEBPTPCH: Sequential or partitioned data sets created by IEBPTPCH must
be unblocked for CMS to read them. If you have a tape created by this
utility, each member (if the data set is partitioned) is preceded with a
card that contains "MEMBER=membername". If you read this tape with the

command:
tappds *

then, CMS creates a disk file from each member, using the membername for
the filename and assigning a filetype of CMSUT1. If you want to assign a
particular filetype, for example TEST, you could enter the command as
follows:

tappds * test

If the file you are reading is a sequential data set, you should use the
NOPDS option of the TAPPDS command:

tappds test file (nopds

The above command reads a sequential data set and assigns it a file
identifier of TEST FILE. If you do not specify a filename or filetype,
the default file identifier is TAPPDS CMSUT1.

IEBUPDTE: Tapes in control file format created by the IEBUPDTE utility
program can be read by CMS. Data sets may be blocked or unblocked, and
may be either sequential or partitioned. Since files created by
IEBUPDTE contain ./ADD control cards to signal the addition of members
to partitioned data sets, you must use the COL1 option of the TAPPDS
command. Also, you must indicate to CMS that the tape was created by
IEBUPDTE. For example, to read a partitioned data set, you would enter

the command

tappds * test (update col1

130 IBM VM/370: CMS User's Guide

The CMS disk files created are always in unblocked, 80-character
format.

IEHMOVE: 0S unloaded partitioned data sets on tapes created by the
IEHMOVE utility program can be read either ty the TAPPDS command or by
the TAPEMAC command. The TAPPDS command creates an individual cMs file

from each member of the PDS.

If the PDS is a macro library, you can use the TAPEMAC command to
copy it into a CMS MACLIB. A MACLIB, a CMS macro library, has a special
format, and can usually be created only by using the CMS MACLIB
command. If you use the TAPPDS command, you have to use the MACLIB
command to create the - macro library from individual files containing
macro definitions.

SPECIFYING SPECIAL TAPE HANDLING OPTIONS

For most of the tape handling that you do in CMS, you do not have to be
concerned with the density or recording format of the magnetic tapes
that you use. There are, however, some instances when it may be
important and there are comrmand options that you can use with the TAPE
conmand MODESET operand and with ASSGN and FILEDEF command options.

The specific situations, and the command options you should use, are
listed below.

o If you are reading or writing a 7-track tape, and the density of the
tape is either 200 or 556 bpi, you must specify DEN 200 or DEN 556.

e If you are reading or writing a 7-track tape with a density of 800
bpi, you must specify 7TRACK.

e If you are reading or writing a 7-track tape without using the data
convert feature, you must use the TRTCH option.

e If you are writing a tape using a 9-track dual density tape drive,
and you want the density to be 800 (on an 800/1600 drive) or 6250 (on
a 1600/6250 drive), then you must specify DEN 800 or DEN 6250.

Using the Remote Spooling Communications Subsystem (RSCS)

If your VM/370 installation is on a Remote Spooling Communications
Subsystem (RSCS) network, you can send printer, punch, or reader spool
files to users at remote locations. To send a spool file, you must know
the userid of the virtual machine at your location that is running RSCS,
and the location identification (locid) of the remote location. If you
are sending a spool file to a particular user at the remote location,
you should also know that userid of the user.

The CP comrands that you can use to transmit files across the network
are TAG and SPOOL. The TAG command allows you to specify the locid and
userid that are to receive a spool file, or, in the case of tagging a
printer or punch, of any spool files produced by that device. With the
SPOOL command, you spool your virtual device to the RSCS virtual
machine. You can also use the TRANSFER command to transfer files from
your own virtual card reader.

The CP commands TAG, SPOOL, and TRANSFER are discussed in detail in
the publication VM/370: CP Command Reference for General Users.

Section 7. Using Real Printers, Punches, Readers, and Tapes 131

Part 2. Program Development Using CMS

You can use CMS to write, develop, update, and test:

e 05 programs to execute either in the CMS environment (using OS
simulation) or in an 0S virtual machine.

e DOS programs to execute in either the CMS/DOS environment or in a DOS
virtual machine.

e CMS programs to execute in the CMS environment.

The 0S and DOS simulation capabilities of CMS allow you to develop OS
and DOS programs interactively in a time-sharing environment. When your
programs are thoroughly tested, you can execute them in an 0S or DOS
virtual machine under the control of VM/370.

"Section 8. Developing 0S Programs Under CMS"™ is for programmers who
use 0S. It describes procedures and techniques for using CMS commands
that simulate 0S functions.

"Section 9. Developing DOS Programs Under CMS" is for programmers who
use DOS. It describes procedures and techniques for using CMS/DOS
commands to simulate DOS/VS functionms.

If you use VSAM and Access Method Services, in either a DOS or an 0S
environment, "Section 10. Using Access Method Services and VSAM in CMS
and CMS/DOS" provides usage information for you. It describes how to
use CMS to manipulate VSAM disks and data sets.

You can use the interactive facilities of CP and CMS to test and
debug programs directly at your termimal. “Section 11. How VM/370 Can
Help You Debug Your Programs" shows examples of commands and debugging
techniques.

The CMS Batch Facility is a CMS feature that allows you to send jobs
to another machine for execution. How to prepare and send job streams
to a CMS Dbatch virtual machine is described in "Section 12. Using the
CMS Batch Facility.n®

As you learn to use CMS, you may want to write programs for CMS
applications. "sSection 13. Programming for the CMS Environment"
contains information for assembler language programmers: linkage
conventions, programming notes, and macro instructions you can use in
CMS programs.

Part 2. Program Development Using CMS 133

Section 8. Developing OS Programs Under CMS

CMS simulates many of the functions of the Operating System (0S),
allowing you to compile, execute and debug 0S programs interactively.
For the most part, you do not need to be concerned with the CMS 0S
simulation routines: they are built into the CMS system. Before you can
compile and execute 0S programs in CMS, however, you must be acquainted
with the following:

e O0S macros that CMS can simulate

e Using 0S data sets in CMS

e How to use the FILEDEF command

e Creating CMs files from 0S data sets

e Using CMS and 0S Macro Libraries

e Assembling Programs in CMS

e Executing prograns

These topics are discussed below. Additional information for O0S VSAM

users is in "Section 10. Using Access Method Services and VSAM Under CMS
and CMS/DOS."

For a practice terminal session using the commands and techniques
presented in Section 8, see "Appendix D: Sample Terminal Sessions."

The CMS system uses many OS ‘terms, but there are a number of 0S
functions that CMS performs somewhat differently. To help you beconme
familiar with the some of the CMS equivalents (where they do exist) for
0s terms and functions, see Figure 11. It lists some commonly-used OS
terms and discusses how CMS handles the functions they imply.

Section 8. Developing OS Programs Under CMS 135

0S Term/Function

CMS Equivalent

|

!
|
I
|
I

|
|
|
|
|
|
|
|
!
I
|
I
|

|
l
|
|
|
|
l
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
1

Cataloged procedure

Data set

Data Definition (DD)

card

Data Set Control

Block (DSCB)

EXEC card

Job Control Language

(JCL)

Link-editing

Load module
Object module
Partitioned data set

STEPCAT ,JOBCAT

STEPLIB, JOBLIB

Utility program

Volume Table of

Contents (VTOC)

EXEC files can execute command sequences
similar to cataloged procedures, and provide
for conditional execution based on return
codes from previous steps.

Data sets are called files in CMS; CMS files
are always sequential but CMS simulates O0S
partitioned data sets. CMS reads and writes
VSAM data sets.

The FILEDEF command allows you to perform the
functions of the DD statement to specify
device types and output file dispositionms.

Information about a CMS disk file is contained
in a File Status Table (FST). o

To execute a prograh in CMS you specify only
the name of the program if it is an EXEC,
MODULE file, or CMS command. To execute TEXT
files, use the LOAD and START commands.

CMS and user-written commands perform the
functions of JCL.

The CMS LOAD command loads object decks (TEXT
files) into virtual storage, and resolves
external references; the GENMOD command
creates absolute nonrelocatable modules.

CMS MODULE files (resulting from the LOAD and
GENMOD commands) are nonrelocatable.

Language compiler output is placed in CMS
files with a filetype of TEXT.

CMS MACLIBs and TXTLIBs are the only CMS files
that resemble partitioned data sets.

VSAM catalogs can be assigned for jobs or job |
steps in CMS by using the special ddnames |
IJSYSCT and IJSYSUC when identifying catalogs.|

o {
The GLOBAL command establishes macro and text |
libraries; you can indirectly provide Jjob |
libraries by accessing and releasing CMS disks|
that contain the files and programs ‘you need. |

Functions similar to those performed by the 0S|
utility programs are provided by CMS commands.|
|
The list of files on a CMS disk is contained |
in a master file directory. |
]

Figure 11. 0S Terms and CMS Equivalents

136

IBM VM/370: CMS User's Guide

Using OS Data Sets in CMS

You can have 0S disks defined in your virtual machine configuration;
they may be either entire disks or minidisks: their size and extent
depends on their VM/370 directory entries. You can use partitioned and
sequential data sets on 0S disks in CMS. If you want, you can create
CMS files from your O0S data sets. If you have data sets on 0S disks,
you can read them from programs you execute in CMS, but you cannot
update them. The CMS commands that recognize O0OS data sets on O0S disks
are listed in Figure 12.

Command Operation

ACCESS Makes the 0S disk containing the data set available

to your CMS virtual machine.
ASSEMBLE| Assembles an 0S source program under CMS.
DDR Copies an entire 0s disk to tape.

Defines 0S data sets for use with Access Method Services
and VSAM files for program input/output.

DLBL

|

|

|

|

|

|

|

|

|

|

'.
FILEDEF | Defines the 0S data set for use under CMS by associating

| an 0S ddname with an 0S data set name. Once defined,

| the data set can be used by an 0S program running under

| CMS and can be manipulated by the other commands that

{ support 0S functions.

|
GLOBAL | Makes macro libraries available to the assembler. You can

| prepare an 0S macro library for reference by the GLOBAL

| command by issuing a FILEDEF command for the data set and

| giving the data set a filetype of MACLIB.

|

LISTDS | Lists information describing 0S data sets residing on
| 0s disks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Moves data records from one device to another device. Each
device is specified by a ddname, which must have been
defined via FILEDEF. You can use the MOVEFILE command to
create CMS files from 0S data sets.

MOVEFILE

QUERY Lists (1) the files that have been defined with the

FILEDEF and DLBL commands (QUERY FILEDEF, QUERY DLBL), or
(2) the status of 0S disks attached to your virtual machine
(QUERY DISK, QUERY SEARCH).

RELEASE Releases an 0S disk you have accessed (via ACCESS) from

your CMS virtual machine.

Verifies the existence of an 0S data set on a disk.
Before STATE can verify the existence of the data set,
you must have defined it (via FILEDEF) .

STATE

o e S g T — T e e W . T e SR G T o Sy TS s ST D amp VD e S ope T cpy T pan, T e D gy S e o)
e o e e e s e, . T e, S s — e, T e, T s . s — o . — T — T — o =)

Figure 12. CMS Commands That Recognize 0S Data Sets and 0S Disks

Section 8. Developing OS Programs Under CMS 137

ACCESS METHODS SUPPORTED BY CMS

0S access methods are supported, to varying extents, by CMS. Under CHMS,
you can execute programs that use the 0S data management macros that are
supplied for these access methods:

e BLAM
» BPAM
e BSAM
®» QSAM
s VSAM

BPAM, BSAM, and QSAM: You can execute programs in CMS that read records

from 0S data sets using the BPAM, BSAM, or QSAM access methods. You
cannot, however, write or update 0S data sets that reside on 0S disks.

BDAM: CMS can neither read nor write 0S data sets on 0S disks using the

BDAM access method.
VSAM PFiles: CMS can read and write VSAM files on 0S disks. For

information on using VSAM under CMS, see "Section 10. Using Access
Method Services and VSAM Under CMS and CMS/DOS."

NS Simulated Data Sets

If you want to test programs in CMS that create or modify 0S data sets,
you can write "0S simulated data sets." These are CMS files that are
maintained on CMS disks, but in 0S format rather than in CMS format.
Since they are CMs files, you can edit, rename, copy, or manipulate them
just as you would any other CMS file. Since they are in OS-simulated
format, files with variable-blocked records may contain block and record
descriptor words so that the access methods can manipulate them
properly.

The files that you create from 0S programs do not necessarily have to
be 0S simulated data sets. You can create CMS files. The format of an
output file depends on how you specify the filemode number when you
issue the FILEDEF command +to identify the file to CMS. If you specify
the filemode number as 4, CMS creates a file +that is in 0S simulated
data set format on a CMS disk.

CMS can read and write 0S simulated data sets using the BDAM, BPAM,
BSAM, and QSAM access methods.

Restrictions for Reading 0S Data Sets

The following restrictions apply when you read 0S data sets from 0S
disks under CMS:

o Read-password-protected data sets are not read.

o BLAM and ISAM data sets are not read.

o Multivolume data sets are read as single-volume data sets.

End-of-volume is treated as end-of-file and there is no end-of-volume
switching.

138 IBM VM/370: CMS User's Guide

e Keys in data sets with keys are ignored; only the data is read.

e User labels in user-labeled data sets are bypassed.

Using the FILEDEF Command

Whenever you execute an 0S program under CMS that has input and/or
output files, or you need to read an 0S data set onto a CMS disk, you
must first identify the files to CMS with the FILEDEF command. The
FILEDEF command in CMS performs the same functions as the Data
Definition (DD) card in 0S job control language (JCL): it describes the
input and output files.

When you enter the FILEDEF command, you specify:

The ddname

The device type

A file identification, if the device type is DISK
Options (if necessary)

Some guidelines for entering these specifications follow.

SPECIFYING THE DDNAME

If the FILEDEF command is issued for a program input or output file,
then the ddname must be the same as the ddname or file name specified
for the file in the source program. For example, you have an assembler
language source program that contains the line:

INFILE DCB DDNAME=INPUTDD ,MACRF=GL,DSORG=PS,RECFM=F,LRECL=80
For a particular execution of this program, you want to use as your
input file a CMS file on your A-disk that is named MYINPUT FILE, then,
you must issue a FILEDEF for this file before executing the program:

filedef inputdd disk myinput file aft

If the input file you want to use is on an 0S disk accessed as your

C-disk, and it has a data set name of PAYROLL.RECORDS.AUGUST, then your
FILEDEF command might be

filedef inputdd c1 dsn payroll records august

SPECIFYING THE DEVICE TYPE

For input files, the device type you enter on the FILEDEF command
indicates the device from which you want records read. It can be DISK,
TERMINAL, READER (for dinput from real cards or virtual cards), or TAPn
(for tape). Using the above example, if your input file is to be read
from your virtual card reader, the FILEDEF command might be as follows:

filedef inputdd reader

Or, if you were reading from a tape attached to your virtual machine at
virtual address 181 (TAP1):

Section 8. Developing OS Programs Under CHS 139

filedef inputdd tap1

For output files, the device you specify can be DISK, PRINTER, PUNCH,
T'APn (tape), or TERMINAL.

If you do not want any real I/O performed during the execution of a
program for a disk input or output file, you can specify the device type
as DUMMY:

filedef inputdd dummy

ENTERING FILE IDENTIFICATIONS

If you are using a CMS disk file for your input or output, you specify
filedef ddname disk filename filetype filemode
The filemode field is optional; if you do not specify it, your A-disk is
assumed. If you want an output file to be constructed in 0S simulated
data set format, you must specify the filemode number as U. For
exanple, a program contains a DCB for an output file with a ddname of
OUTPUTDD, and you are using it to create a CMS file named DAILY OUTPUT
on your B-disk:
filedef outputdd disk daily output bl

If your input file is an 0S data set on an 0S disk, you can identify
it in several wvays:

e If the data set name has only two qualifiers, for example
HEALTH.RECORDS, you can specify:

filedef inputdd disk health records b1

¢ If it has more than two qualifiers, you can use the DSN keyword and
enter:

filedef inputdd b1 dsn health records august 1974
Or you can request a prompt for a complete data set nanme:
filedef inputdd b1 dsn ?
ENTER DATA SET NAME:
health.records.august. 1974
Note: When you enter a data set name using the DSN keyword, either
with or without a request for prompting, you should omit the device
type specification of DISK, unless you want to assign a CMS file
identifier, as in the example below.
* You can also relate an 0S data set name to a CMS file identifier:
filedef inputdd disk ossim file c1 dsn monthly records

Then you can refer to the 0S data set MONTHLY.RECORDS by wusing the
CMS file identifier, OSSIM FILE:

state ossim file c
When you do not issue a FILEDEF command for a program input or output

file, or if you enter only the ddname and device type on +the FILEDEF
command, such as:

140 IBM VM/370: CMS User's Guide

filedef oscar disk
then CMS issues a default file definition, as follows:
FILEDEF ddname DISK FILE ddname A1

where ddname is the ddname you assigned in the DDNAME operand of the DCB
macro in your program or on the FILEDEF command. For example, if you
assign a ddname of OSCAR to an output file and do not issue a FILEDEF
command before you execute the program, then the CMS file FILE OSCAR A1
is created when you execute the progranm.

SPECIFYING OPTIONS

The FILEDEF command has many options; those mentioned below are a
sampling only. For complete descriptions of all the options of the
FILEDEF command, see the VM/370: CMS Command and Macro Reference.

BLOCK, LRECL, RECFM, DSORG: If you are using the FILEDEF command to
relate a data control block (DCB) in a program to an input or output
file, you may need to supply some of the file format information, such
as the record 1length and block size, on the FILEDEF command 1line. For
example, if you have coded a DCB macro for an output file as follows:

OUTFILE DCB DDNAME=0OUT,MACRF=PM,DSORG=PS

then, when you are issuing a FILEDEF for this ddname, you must specify
the format of the file. To create an output file on disk, blocked in 0S
simulated data set format, you could issue:

filedef out disk myoutput file al (recfm fk 1lrecl 80 block 1600
To punch the output file onto cards, you would issue
filedef out punch (lrecl 80 recfm f

You must supply file format information on the FILEDEF command line
whenever it is not supplied on the DCB macro, except for existing disk
files.

PERM: Usually, when you execute one of the language processors, all
existing file definitions are cleared. If the development of a program
requires you to recompile and re-execute it frequently, you might want
to use the PERM option when you issue file definitions for your input
and output files. For example: :

cp spool punch to *
filedef indd disk test file a1 (lrecl 80 perm
filedef outdd punch (lrecl 80 perm

In this example, since you spooled your virtual punch to your own
virtual card reader, output files are placed in your virtual reader. You
can either read or delete then.

All file definitions issued with the PERM option stay in effect until
you log off, specifically clear those definitions, or redefine them:

filedef indd clear
filedef outdd tap1 (lrecl 80

In the above example, the definition for INDD is cleared; OUTDD is
redefined as a tape file.

Section 8. Developing 0OS Programs Under CMS 141

When you issue the command
filedef * clear

all file definitions are cleared, except those you enter with the PERM
option.

When a program abends, or when you issue the HX Immediate command,
all file definitions are cleared, including those entered with the PERM
option.

DISP MOD: When you issue a FILEDEF command for an output file and assign
it a CMS file identifier that is identical to that of an existing CMS
file, then when anything is written to that ddname the existing file is
replaced by the new output file. If you want, instead, to have new
records added to the bottom of the existing file, you can use the DISP
MOD option:

filedef outdd disk new update a1l (disp mod

MEMBER: If the file you want to read is a memker of am OS partitioned
data set (or a CMS MACLIB or TXTLIB), you can use the MEMBER option to
specify the membername, for example

filedef test ¢ dsn sys1 maclib (member test

defines the member TEST from the 0S macro library SYS1.MACLIB.

Creating CMS Files From OS Data Sets

If you have data sets on OS disks, or on tapes or cards, Yyou can copy
them into CMS files so that you can edit, modify, or manipulate them
with CMS commands. The CMS MOVEFILE command copies 0S (or CHMS) files
from one device to another. You can move data sets from any valid input
device to any valid output device.

Before using the MOVEFILE command, you must define the input and
output data sets or files and assign them ddnames using the FILEDEF
command. If you use the ddnames INMOVE and OUTMOVE, then you do not
need to specify the ddnames when you issue the MOVEFILE command. For
example, the following sequence of commands copies a CMS disk file into
your virtual card punch:

filedef inmove disk diskin file al
filedef outmove punch
movefile

The result of these commands is effectively the same as if you had
issued the command

punch diskin file (noheader

The example does, however, illustrate the basic relationship between the
FILEDEF and MOVEFILE commands. In addition to the MOVEFILE command, if
the 0S input data set is on tape or cards, you can use the TAPPDS or
READCARD command to create CMS files. These are also discussed below.

COPYING SEQUENTIAL DATA SETS FROM DISK: The MOVEFILE command copies a
sequential 0S disk data set from a read-only 0S disk into an integral
CMS file on a CMS read/write disk. You use FILEDEF commands to identify
the input file disk mode and data set name:

142 IBM VM/370: CHMS User's Guide

filedef inmove c1 dsn sales manual

the CMS output file's disk location and fileid:
filedef outmove disk sales manual a1l

and then you issue the MOVEFILE command:
movefile

COPYING PARTITIONED DATA SETS FROM DISK: The MOVEFILE command can copy

O e . e S S e S

partitioned data (PDS) into CMS disk files, and create separate CMS
files for each member of the data set. You can have the entire data set
copied, or you can copy only a selected member. For example, if you
have a partitioned data set named ASSEMBLE.SOQURCE whose members are
individual assembler language source files, your input file definition
might be:

filedef inmove c1 dsn assemble source

To create individual CMS ASSEMBLE files, you would issue the output file
definition as:

filedef outmove disk gprint assemble al
Then use the PDS option of the MOVEFILE command:

movefile (pds
When the CMS files are created, the filetype on the output file
definition is used for the filetype and the member names are used

instead of the CMS filename you specified.

If you want to copy only a single member, you can use the MEMBER
option of the FILEDEF conmand:

filedef inmove disk assemble source c¢ (member gprint
and omit the PDS option on the MOVEFILE command:
movefile

Figure 13 summarizes the various ways that you can create CMS files
from 0S data sets.

Section 8. Developing 0OS Programs Under CMS 143

Input File: An 0S sequential data set named: COMPUTE.TEST.RECORDS

Source | CMS Command Examples | CHMS Output File

Disk: | filedef indd c1 dsn compute test records | COMPUTE RECORDS A1
0S R/0 | filedef outdd disk compute records al |
C-disk | movefile indd outdd 1

Tape: | filedef inmove tap1 (lrecl 80 | TEST RECORDS A1
181 | filedef outmove disk test records al |
| movefile |
|
| tappds newtest compute (nopds | NEWIEST COMPUTE At
Cards filedef cardin reader | COMPUTE CARDS A1

filedef diskout disk compute cards al |

|
|
| movefile cardin diskout i
|
|

readcard comgpute test | COMPUTE TEST 21

Input file: 0S partitioned data set named: TEST.CASES
Members named: SIMPLE, COMPLEX, MIXED

filedef run disk |
movefile in rTun |

Source | CMS Command Examples | CHMS Output File (s)
Disk: | filedef infile disk test cases c1 | SIMPLE TESTCASE A1
0S R/0 | filedef outfile disk new testcase al | COMPLEX TESTCASE A1
C-disk | movefile infile outfile (pds | MIXED TESTCASE

|

| filedef in c1 dsn test cases (member simple | FILE RUN A1

|

|

Tape: | tappds ¥ testrun (tap2 | SIMPLE TESTRUN A1
182 | | COMPLEX TESTRUN A1

¥
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
1
|
|
i
1
|
|
|
|
|
|
|
|
: | | MIXED TESTRUN Al
[

Fiqure 13. Creating CMS Files From OS Data Sets

Using CMS Libraries

CMS provides two types of libraries to aid in 0S program development:
e Macro libraries contain macro definitions and/or copy files

e Text, or program libraries contain relocatable object progranmns
(compiler output)

These CMS 1libraries are like O0S partitioned data sets; each has a
directory and members. Since they are not like other CMS files, you
create, update, and use them differently than you do other CMS files.
Macro libraries are discussed below; text libraries are discussed under
WTEXT Libraries (TXTLIBs)" later in this section.

A CMS macro library has a filetype of MACLIB. You can create a MACLIB
from files with filetypes of MACRO or COPY. A MACRO file may contain
macro definitions; COPY files contain predefined source statements.

When you want to assemble or compile a source program that uses macro
or copy definitions, you must ensure that the library containing the
code 1is identified before you invoke the compiler. Otherwise, the
library is not searched. You identify libraries to be searched using the

144 IBM VM/370: CMS User's Guide

GLOBAL command. For example, if you have two MACLIBs that contain your
private macros and copy files whose names are TESTMAC MACLIB and
TESTCOPY MACLIB, you would issue the command

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify then. A GLOBAL command remains in effect for the
remainder of your terminal session, until you issue ancther GLOBAL
MACLIB command or re-IPL CMS. To find out what macro 1libraries are
currently available for searching, issue the command

query maclib

You can reset the libraries or the search order ty reissuing the GLOBAL
command.

THE MACLIB COMMAND

The MACLIB command performs a variety of functions. You use it to:

Create the MACLIB (GEN function)

Add, delete, or replace members (ADD, DEL, and REP functions)
Compress the MACLIB (COMP function)

List the contents of the MACLIB (MAP function)

Descriptions of these MACLIB command functions follow.
GEN Function: The GEN (generate) function creates a CMS macro library
from input files specified on the command line. The input files must
have filetypes of either MACRO or. COPY. For example:

maclib gen osmac access time put regequ
creates a macro library with the file identifier OSMAC MACLIB A1 from
macros existing in the files with the file identifiers:

ACCESS MACRO},TIHE MACRO),PUT (MACRO)|,and REGEQU HACRO}
corYy COPY CoPY COPY

If a file named OSMAC MACLIB A1 already exists, it is erased.

Assume that the files ACCESS MACRO, TIME COPY, PUT MACRO, and REGEQU
COPY exist and contain macros in the following form:

ACCESS MACRO TIME COPY PUT MACRO REGEQU COPY
GET *COPY TTIMER PUT XREG
TTIMER
PUT *COPY STIMER YREG
STIMER

The resulting file, OSMAC MACLIB A1, contains the members:

GET STIMER
PUT PUT
TTIMER REGEQU

The PUT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for

Section 8. Developing 0S Programs Under CMS 145

duplicate macro names. If, at a later time, the PUT macro is requested
from OSMAC MACLIB, the first PUT macro encountered in the directory is

usied .

When COPY files are added to MACLIBs, the name of the library member
is taken from the name of the COPY file, or from the *COPY statement, as
in the file TIME COPY, above. Note that although the file REGEQU COPY
contained two macros, they were both included in the MACLIB with the
name REGEQU. When the input file is a MACRO file, the member name(s) are
taken from macro prototyre statements in the MACRO file.

ADD Function: The ADD function appends new members to an existing macro
library. For example, if OSMAC MACLIB A1 exists as created in the
example in the explanation of the GEN function and the file ©DCB COPY

exists as follows:
*COPY DCB
DCB macro definition
*COPY DCBD
DCBD macro definition
if you issue the command
maclib add osmac dcb

the resulting OSMAC MACLIB A1 contains the members:

GET PUT
PUT REGEQU
TTIMER DCB

STIMER DCBD

REP Function: The REP (replace) function deletes the directory entry for
the macro definition in the files specified. It then appends new macro
definitions to the macro library and creates new directory entries. For
exanple, assume that a macro library MYMAC MACLIB contains the members

A, B, and C, and that the following command is entered:
maclib rep mymac a ¢

The files represented by file identifiers A MACRO and C MACRO each have
one macro definition. After execution of the command, MYMAC MACLIB
contains members with the same names as before, but the contents of A
and C are different.

DEL Function: The DEL (delete) function removes the specified macro name
from the macro library directory and compresses the directory so there
are no unused entries. The macro definition still occupies space in the
library, but since no directory entry exists it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered

is deleted. For example:
maclib del osmac get put ttimer dcb

deletes macro names GET, PUT, TTIMER, and DCB from the directory of the
macro library named OSMAC MACLIB. Assume that OSMAC exists as in the ADD
function example. After the above command, OSMAC MACLIB contains the
following members:

STIMER
PUT
REGEQU
DCBD

146 IBM VM/370: CMS User's Guide

COMP Function: Execution of a MACLIB command with the DEL or REP
functions can leave unused space within a macro 1library. The COMP
{(compress) function removes any macros that do not have directory
entries. This function wuses a temporary file named MACLIB CMSUT1. For
example, the command:

maclib comp mymac
compresses the library MYMAC MACLIB.

MAP Function: The MAP function «creates a 1list containing the name of
each macro in the directory, the size of the macro, and its position
within the macro library. If you want to display a list of the members

of a MACLIB at the terminal, enter the command

maclib map mylib (term
The default option, DISK, creates a file on your A-disk, which has a
filetype of MAP and a filename corresponding to the filename of the

MACLIB. If you specify the PRINT option, the list is spooled tc your
virtual printer, as well as being written onto disk.

Manipulating MACLIB Members

The following CMS commands have MEMBER options, which allow you to
reference individual members of a MACLIB:

PRINT (to print a member)

PUNCH (to punch a member)

TYPE (to display a member)

FILEDEF (to establish a file definition for a member)

You can use the CMS Editor to «create MACRO and COPY files and then
use the MACLIB command to place the files in a library. Once they are
in a library, you can erase the original files.

To extract a member from a macro 1library, you can use either the
PUNCH or the MOVEFILE command. If you use the PUNCH command you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *
then punch the member:

punch testmac maclib (member get noheader
and read it back onto disk:

readcard get macro
In the above example, the member was punched with the NOHEADER option of
the PUNCH command, so that a name could be assigned on the READCARD
command line. If a header card had been created for the file, it would
have indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for
the input member name and the output macro or copy name before entering
the MOVEFILE command:

filedef inmove disk testcopy maclib (member enter

filedef outmove disk enter copy a
movefile

Section 8. Developing OS Programs Under CMS 147

This example copies the member ENTER from the macro 1library TESTCOPY
MACLIB into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members from
CNS MACLIBs, each member is followed by a // record, which is a MACLIB
deliniter. You can edit the file and use the DELETE subcommand to
delete the // record.

System MACLIBS

The macro libraries that are on the system disk contain CMS and. OS
assembler language macros that you may want to use in your programs:

e CMSLIB MACLIB contains the CMS macros.

e OSMACRO MACLIB contains the 0S macros that CMS simulates.

e OSMACRO1 MACLIB contains the macros CMS does not simulate. (You can
assemble programs in CMS that contain these macros, but you must

execute them in an 0S virtual machine.)

e TSOMAC MACLIB contains TSO macros.

DOSMACRO MACLIB contains macros used in CMS/DOS.

To obtain a list of the macros in any of these libraries, use the MAP
function of the MACLIB command.

USING OS MACRO LIBRARIES

If you want to assemble source programs that contain macro statements
that are defined in macro libraries on your 0S disks, you can use the
FILECEF command to identify them to CMS so that you can name them when
you issue the GLOBAL command. For example, the commands

filedef cmslib disk temp maclib c dsn test asm macros
global maclib temp

allow you to access the macro library TEST.ASM.MACROS on the 0S disk
accessed as your C-disk.

When you issue a FILEDEF command for an assembler language macro
library you must use a ddname of CMSLIB; and you must provide a CHS file
identifier for the 0S5 data set. In the example above, the 0SS macro
library TEST.ASM.MACROS is given the CMS file identifier TEMP MACLIB.

If you want to use more than one O0S macro library you must issue a
FILEDEF command for each library using the ddname CMSLIB and specifying
the CONCAT option. For example:

filedef cmslib disk asp1 maclib * dsn aspl macros rl (concat recfm fb block 3360 lrecl 80
filedef cmslib disk asp2 maclib * dsn asp2 macros rl (concat

filedef cmslib disk sys1 maclib *

global maclib aspl1 asp2 sys? osmacro cmslib

The GLOBAL command establishes the search order of the 1libraries as:
ASP1.MACROS.RL, ASP2.MACROS.RL, SYS1.MACLIB, OSMACRO MACLIB, and CMSLIB
MACLIB. Note +that the +third library specified is entered in an
abbreviated form. You can use this form when the data set name of the

148 IBM VM/370: CMS User's Guide

macro library has only two qualifiers and the second gqualifier |is
MACLIB; thus, the equivalency is established between SYS1.MACLIB and the
CMS file identifier SYS1 MACLIB.

The file format information describes the macro libraries to CMS;
when you are concatenating O0S macro libraries, they must all be in the
same format, since the options entered on the first FILEDEF command are
applied to all the libraries.

If you are ﬁsing only one 0S macro library in addition to CMS MACLIBs
you can enter either

filedef cmslib disk 1lib1 maclib * dsn sys1 maclib (concat
global maclib 1ib1 cmslib

-- Oor --

filedef cmslib disk 1ib1 maclib * dsn sys1 maclib
global maclib 1lib1 cmslib

To identify libraries for use with the language processors, you must
use the ddname SYSLIB.

Using OS Macros Under CMS

You can assemble and execute programs under CMS that use OS macros.
Figure 14 lists the O0S macros that CMS simulates. The macros that are
are listed as "Effective no-op"™ and "no-op" are macros that are not
supported in CMS; you can assemble programs that contain these macros,
but when you execute them in CMS the macro functions are not performed.
To execute these programs, you must run them in an 0S virtual machine.

For a more detailed description of how CMS simulates the functions of
these macros, and to see whether any particular function of a macro is
not supported, see the VM/370: System Programmer's Guide.

Assembling Programs in CMS

To assemble assembler language source programs into object module
format, you can use the ASSEMBLE command, and specify assembler options
on the command line, for example

assemble myfile (print
assembles a source program named MYFILE ASSEMBLE and directs the output

listing to the printer. All of the ASSEMBLE command options are listed
in the VYM/370: CMS Command and Macro Reference.

When you invoke the ASSEMBLE command specifying a file with the
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the specified file. W®When the
assembler creates its output 1listing and text deck, it creates files
with filetypes of LISTING and TEXT, and writes them onto disk according
to the following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING
files are written onto that disk.

Section 8. Developing 0OS Programs Under CMS 149

r 1
| Macro S¥C No. Function |
| ABEND 13 Terminate processing |
| ATTACH 42 Effective LINK |
| BLDL 18 Build a directory list for a PDS |
{ BSP 69 Back up a record on a tape or disk |
| CHAP 4y Effective no-op |
| CHECK - Verify READ/WRITE macro completion |
| CHKPT 63 Effective no-op |
{ CLOSE 20 Deactivate a data file |
| DCB - Construct a data control block |
| DCBD - Generate a DSECT for a data control block |
| DELETE 09 Delete a loaded phase |
| DEQ us Effective no-op |
| DETACH 62 Effective no-op |
| DEVTYPE 24 Obtain device-type characteristics |
| ENQ 56 Effective no-op |
{ EXTRACT 40 Effective no-op |
| FIND 18 Locate a member of a partitioned data set |
| FREEDBUF 57 Release a free storage buffer {
| FREEMAIN 05 Release user—acquired storage |
| FREEMAIN 10 Manipulate user free storage |
| FREEPOOL - Simulate as SVC 10 |
| GET - Read system—-blocked data (QSAM) {
| GETMAIN o4 Conditionally acquire user storage |
| GETMAIN 10 Manipulate user free storage I
| GETPOOL - Simulate as SVC 10 {
i IDENTIFY 41 Add entry to loader table |
| LINK 06 Link control to another phase |
| LOAD 08 Read a phase into storage |
| NOTE - Manage data set positioning |
| OPEN 19 Activate a data file |
| OPENJ 22 Activate a data file {
| POINT - Manage data set positioning |
| POST 02 Post the I/0 completion |
{ PUT - Write system-blocked data (QSAM) |
| RDJFCB 6uU Obtain information from FILEDEF command |
| READ - Access system—-record data |
| RETURN - Return from a sukroutine |
| SAVE - Save program registers |
| SNAP 51 Dump specified areas of storage |
{ SPIE 14 Allow processing program to i
{ handle program interrupts |
| STAE 60 Allow processing program to |
| decipher abend conditions |
| STAX 96 Create an attention exit block |
| STIMER 47 Set timer |
| STOW 21 Manipulate partitioned directories |
| SYNADAF - Provide SYNAD analysis function |
| SYNADRLS - Release SYNADAF message and save areas |
| TCLEARQ 9y Clear terminal input queue |
| TCLOSE 23 Temporarily deactivate a data file |
| TGET/TPUT 93 Read or write a terminal line i
| TIME 1 Get the time of day |
| TRKBAL 25 no-—-op |
| TTIMER 46 Access or cancel timer |
| WAIT 01 Wait for an I/0 completion |
| WRITE - Write system—record data i
| WTO/WTOR 35 Communicate with the terminal |
! XCTL 07 Delete, then link control to another }
| load phase |
i XDAP 00 Read or write direct access volumes |
L .]
Figure 14. O0S Macros Simulated by CMS

150 IBM VM/370: CMS User's Guide

2. If the source file is on a read-only extension of a read/write
disk, the TEXT and LISTING files are written onto the parent disk.

3. If the source file is on any other read-only disk, the TEXT and
LISTING files are written onto the A-disk.

In all of the above cases, the TEXT and LISTING files have a filename
that is the same as the input ASSEMBLE file.

The input and output files used by the assembler are assigned by
FILEDEF commands that CMS issues internally when the assembler is
invoked. If you issue a FILEDEF command using one of the assembler
ddnames before you issue the ASSEMBLE command, you can override the
default file definitions.

The ddname for the source input file (SYSIN) is ASSEMBLE. If you
enter

filedef assemble reader
assemnble sample

then the assembler reads your input file from your card reader, and
assigns the filename SAMPLE to the output TEXT and LISTING files.

You could assemble a source file directly from an 0S disk by entering

filedef assemble disk myfile assemble b4 dsn os source file
assemble myfile

In this example, the CMS file identifier MYFILE ASSEMBLE is assigned to
the data set 0S.SOURCE.FILE and then assembled.

LISTING and TEXT are the ddnames assigned to the SYSPRINT and SYSLIN
output of the assembler. You might assign file definitions to override
these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

In this example, output from the assembly of the file, SOURCE ASSEMBLE,
is written to the files, ASSEMELE LISTFILE and ASSEMBLE TEXTFILE.

The ddnames PUNCH and CMSLIB are used for SYSPUNCH and SYSLIB data
sets. PUNCH output is produced when you use the DECK option of the
ASSEMBLE command. The default file definition for CMSLIB is the macro
library CMSLIB MACLIB, but you must still issue the GLOBAL command if
you want to use it.

Executing Programs

After you have assembled or compiled a source program you can execute
the TEXT files that were produced by the assembly or compilation. You
may not, however, be able to execute all your 0OS programs directly in
CMS. There are a number of execution-time restrictions placed on your
virtual machine by VM/370. You cannot execute a program that uses:

e Multitasking

e More than one partition

e Teleprocessing

e ISAM macros to read or write files

Section 8. Developing 0S Programs Under CMS 151

The above is only a partial list, representing those restrictions with
which you might be concerned. For a complete list of restrictions, see
the VM/370: Planning and System Generation Guide.

EXECUTING TEXT FILES

TEXT files, in CMS, are relocatable, and can be executed simply by
loading them into virtual storage with the LOAD command and using the
START command to begin execution. For example, if you have assembled a
source program named CREATE, you have a file named CREATE TEXT. You can
issue the command

load create

which 1loads the relocatable object file into storage, and then, to
execute it, you can issue the START command:

start
In the case of a simple program, as in the above example, you can
load and begin execution with a single command line, using the START
option of the LOAD command:
load create (start
When you issue the START command or LOAD command with the START
option, control is passed to the first-entry point in your program. If
you have more than one entry point and you want to begin execution at an
entry point other than the first, you can specify the alternate entry
point or CSECT name on the START command:
start create2

When you issue the LCAD command specifying the filename of a TEXT file,
CMS searches all of your accessed disks for the specified file.

If your program expects a parameter list to be passed (via register
1), you can specify the arguments on the START command line. If you
enter arquments, then you must specify the entry point:

start * namel

When you specify the entry point as an asterisk (¥) it indicates that
you want to use the default entry point.

Defining Input and Output Files

You can issue the FILEDEF command to define input and output files any
time before you begin program execution. You can issue all your file
definitions before loading any TEXT files, or issue them during the
loading process. You can find out what file definitions are currently
in effect by issuing the FILEDEF command with no operands:

filedef

You can also use the FILEDEF operand of the QUERY command.

152 IBM VM/370: CMS User's Guide

TEXT LIBRARIES (TXTLIBS)

You may want to keep your TEXT files in text libraries, that have a
filetype of TXTLIB. Like MACLIBs, TXTLIBs have a directory and members.
TXTLIBs are created and modified by the TXTLIB command, which has
functions similar to the MACLIB command:

The GEN function creates the TXTLIB.

The ADD function adds members to the TXTLIB.

The DEL function deletes members and compresses the TXTLIB.
The MAP function lists members.

There is no REP function; you must use a DEL followed by an ADD to
replace an existing member. The CMS commands that recognize MACLIBS as
special filetypes also recognize TXTLIBs, and allow you to display,
print, or punch TXTLIB members.

The TXTLIB command reads the object files as it writes them into the
library, and creates a directory entry for each entry point or CSECT
name, If you have a TEXT file named MYPROG, which has a single routine
named BEGIN, and create the TXTLIB named TESTLIB as follows:

txtlib gen testlib myprog

TESTLIB contains no entry for the name MYPROG; you must specify the
membername BEGIN to reference this TXTLIB member.

When you want to load members of TXTLIBs into storage to execute thenm
(just as you execute TEXT files), you must issue the GLOBAL command to
identify the TXTLIB:

global txtlib testlib
load begin (start

When you specify more than one TXTLIB on the GLOBAL command line, the
order of search is established for the TXTLIBs. However, if the AUTO
option is in effect (it is the default), CMS searches for TEXT files
before searching active TXTLIBs.

When the TXTLIB command processes a TEXT file, it writes an LDT
(loader terminate) card at the end of the TEXT file, so that whemn a locad
request is issued for a TXTLIB member, 1loading terminates at the end of
the member. If you add 0S linkage editor control statements to the TEXT
file (using the CMS Editor) before you issue the TXTLIB command to add
the file to a TXTLIB, the control statements are processed as follows:

NAME: A NAME statement causes the TXTLIB command to create the directory
entry for the member using the specified name. Thereafter, when you want
to load that member into storage or delete it from the TXTLIB you must
refer to it by the name specified on the NAME statement.

ENTRY: If you use an ENTRY statement, the entry point you specify is
validated and checked for a duplicate. If the entry point name is valid
and there are no duplicates in the TEXT file, the entry name is written
in the LDT card. Otherwise, an error message 1is issued. When this
member is 1loaded, execution begins at the entry point specified. (See
“Determining Program Entry Points," below.)

ALIAS: An entry is created in the directory for the ALIAS name you
specify. A maximum of 16 alias names can be used in a single text deck.
You may load the single member and execute it by referring to the alias
narme, but you cannot use the alias name as the object of V-type address

constant (VCON), because the address of the member cannot be resolved.

Section 8. Developing 0S Programs Under CMS 153

SETSSI: Information you specify on the SETSSI card is written in bytes

26 through 33 of the LDT card.

All other OS linkage editor control statements are ignored by the
TXTLIB command and written into the TXTLIB memker. When you attempt to
load the member, the CMS loader flags these cards as invalid.

RESCLVING EXTERNAL REFERENCES

There is no real linkage editor in CMS; the link-edit function, that of
locating external references and loading additional object modules into
storage, is performed by the CMS loader. The CMS loader 1loads files
into storage as a result of a LOAD or INCLUDE command, or when you issue
a dynamic load request from a program (using the 0S macros LOAD, LINK,
or XCTL).

When a file is loaded, the locader checks for unresolved references;
if there are any, the loader searches your disks for TEXT files with
filenames that match the external entry name. When it finds a match, it
loads the TEXT file into storage. If a TEXT file is not found, the
loader searches any available TXTLIBs for members that match, and loads
them when it does.

If there are still unresolved references, for example, if you load a
program that calls routines PRINT and ANALYZE but the loader cannot
locate them, you receive the message:

THE FOLLOWING NAMES ARE UNDEFINED:
PRINT
ANALYZE

You can issue the INCLUDE command to load additional TEXT files or
TXTLIB members into storage so the loader can resolve any remaining
references. For example, if you did not identify the TXTLIB that
contains the routines you want to call, you may enter the GLOBAL command
followed by the INCLUDE command:

global txtlib newlib

include print analyze (start

This situation might also occur if you have TEXT files with filenames
that are different from the CSECT names; you must explicitly issue LOAD
and INCLUDE commands for these files.

At execution time, if there are still any unresolved references,

their addresses are all set to 0 by the 1locader, so any attempt to
address them in a program may result in a program check.

e e -

The INCLUDE command has the same format and option 1list (with one
exception) as the LOAD command. The main difference is that when you
issue the INCLUDE command the loader tables are not reset; if you issue
tvo LOAD commands in succession, the second LOAD command cancels the
effect of the first, and the pointers to the files loaded are lost.

Conversely, the INCLUDE command, which you must issue when you want

to load additional files into storage, should not be used unless you
have Jjust issued a LOAD command. You may specify as many INCLUDE

154 IBM VM/370: CMS User's Guide

commands as necessary following a LOAD command to load files into
storage.

CONTROLLING THE CMS LOADER

The LOAD and INCLUDE commands allow you to specify a number of options.
You can: ’

e Change the entry point to which control is to be passed when
execution begins (RESET option).

e sSpecify the location in virtual storage at which you want the files
to be loaded (ORIGIN option).

e Control how CMS resolves references and handles duplicate CSECT names
(AUTO, LIB, and DUP optiomns).

e Clear storage to binary zeros before loading files (CLEAR option).

When the LOAD and INCLUDE commands execute, they produce a load map,
indicating the entry points loaded and their virtual storage locations.
You may find this load map useful in debugging your programs. If you do
not specify the NOMAP option, the load map is written onto your A-disk,
in a file named LOAD MAP AS. EBach time you issue the LOAD command, the
0ld file LOAD MAP is erased and the new load map replaces it. If you do
not want to produce a load map, specify the NOMAP option.

You can find details about these, and other options wunder the
discussion of the LOAD command in VM/370: CMS Command and Macro
Reference.

o e e R e i e s i . e s s e s S o

In addition to the options provided with the LOAD and INCLUDE commands
that assist you in controlling the execution of TEXT files, you can also
use loader control statements. These can be inserted in TEXT files,
using the CMs Editor. The loader control statements allow you to:

e Set the location counter to specify the address at which the next
TEXT file is to be loaded (SLC statement).

e Modify instructions and constants in a TEXT file, and change the
length of the TEXT file to accomodate modifications (Replace and
Include Control Section statements).

e Change the entry point (ENTRY statement).

e Nullify an external reference so that it does not receive control
when it is called, and you do not receive an error message when it is
encountered (LIBRARY statement).

These statements are also described under the LOAD ccmmand in VM/370:
CcMS Command and Macro Reference.

Section 8. Developing 0S Programs Under CMS 155

Determining Program Entry Points

When you load a single TEXT file or a TXTLIB member into storage for
execution, the default entry point is the first CSECT name in the object
file loaded. You can specify a different entry point at which to start
execution either on the LOAD (or INCLUDE) command line with the RESET
option:

load myprog (reset beta

where BETA is the alternate entry point of your program, or you can
specify the entry point on the START command line:

start beta

When you load multiple TEXT files (either explicitly or implicitly,
by allowing the loader to resolve external references), you also have
the option of specifying the entry point on the LOAD, INCLUDE, or START
command lines.

If you do not specifically name an entry point, the loader determines
the entry point for you, according to the following hierarchy:

1. An entry point specified on the START command

2. The last entry specified with the RESET option cn a LOAD or INCLUDE
command

3. The name on the last ENTRY statement that was read

4. The name on the last LDT statement that contained an entry name
that was read

S. The name on the first assembler- or compiler-produced END statement
that was read

6. The first byte of the first control section loaded

For example, if you load a series.of TEXT files that contain no
control statements, and do not specify an entry point on the. LOAD,
INCLUDE, or START commands, execution begins with the first file that
you loaded. If you want to control the execution of program subroutines,
you should be aware of this hierarchy when you load programs or when you
place them in TXTLIBs.

An area of particular concern is when 7you issue a dynamic load (with
the 0S5 LINK, LOAD, or XCTL macros) from a program, and you call members
of CHMS TXTLIBs. The CM5 lodder determines the entry point of the called
program, and returns the entry point to your program. If a TXTLIB member
that you load has a VCON to another TXTLIB member, the LDT card from the
second member may be the last LDT card read by the loader. If this LDT
card specifies the name of the second member, then CMS may return that
entry point address to your program, rather than the address of the
first member.

CREATING PROGRAM MODULES

When your programs are debugged and tested, you can use the LOAD and
INCLUDE commands, in conjunction with the GENMOD command, to create
program modules. A module is a nonrelocatable file whose external

156 IBM VM/370: CMS User's Guide

references have been resolved. In CMS, these files must have a filetype
of MODULE.

To create a program module, load the TEXT files or TXTLIB members
into storage and issue the GENMOD command:

load create analyze print
genmod process

In this example, PROCESS is the filename you are assigning the
nodule; it will have a filetype of MODULE. You could use any name; if
you use the name of an existing MODULE file, the old onme is replaced.

To execute the program composed of the source files CREATE, ANALYZE,
and PRINT, enter:

process

If PROCESS requires input and/or output files, you will have to defimne
these files before PROCESS can execute properly; if PROCESS expects
arguments passed to it, you can enter them following the MODULE name,
for example

process testi

For more information on creating program modules, see "Section 13.
Programming for the CMS Environment."

USING EXEC PROCEDURES

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CHMS commands that you
execute frequently. For example, if you need a number of MACLIBS,
TXTLIBs, and file definitions to execute a particular program, you might
have an EXEC procedure as follows:

§CONTROL ERROR TIME

EERROR &EEXIT &RETCODE

GLOBAL MACLIB TESTLIB OSMACRO OSMACRO1
ASSEMBLE TESTA

PRINT TESTA LISTING

GLOBAL TXTLIB TESTLIB PROGLIE
ACCESS 200 E

EBEGSTACK

OS.TEST3.STREAM.BETA

&END

FILEDEF INDD1 E DSN ?

FILEDEF INDD2 READER

FILEDEF OUTFILE DISK TEST DATA A1
LOAD TESTA (START

&§IF ERETCODE = 100 §GOTO -RET100
§IF &RETCODE = 200 §GOTO -RET200
&EEXIT SRETCODE

-RET100 &ECONTINUE

-RET200 ECONTINUE

Section 8. Developing 0S Programs Under CMS 157

The &CONTROL and &ERROR control statements in the EXEC procedure
ensure that if an error occurs during any part of the EXEC, the
remainder of the EXEC does not execute, and the execution summary of the
EXEC indicates the command that caused the error.

Note that for the FILEDEF command entered with the DSN ? operand,
you must stack the response before issuing the FILEDEF command. In this
exanple, since the 0S data set name has more than 8 characters, you must
use the &BEGSTACK control statement to stack it. If you use the &§STACK
control statement, the EXEC processor truncates all words to 8
characters.

When your program is finished executing, the EXEC special variable
SRETCODE indicates the contents of general register 15 at <the time the
program exited. You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

For detailed information on creating EXEC procedures, see "Part 3.
Learning to Use EXEC."

158 IBM VM/370: CMS User's Guide

Section 9. Developing DOS Programs Under CMS

You can use CMS to create, compile, execute and debug DOS progranmns
written in assembler, COBOL, or PL/I programming languages. CHMs
simulates many DOS/VS functions so that you can use the interactive
facilities of VM/370 to develop your programs, and then execute them in
a DOS virtual machine.

Section 9 tells you how to use the CMS/DOS environment, and describes
the CMS commands you can use to manipulate DOS disks and DOS files and
CMS/DOS commands you can use to simulate the functions of the Disk
Operating System (DOS/VS):

The CMS/DOS environment

Using DOS files on DOS disks

Using the ASSGN command

Using the DLBL command

Using DOS libraries in CMS/DOS

Using macro libraries

DOS assembler language macros supported
Assembling source programs
Link-editing programs in CMS/DOS
Executing programs in CMS/D0S

For a practice terminal session using the commands and techniques
presented in this section, see "Appendix D: Sample Terminal Sessions."™

A ¥Word About Terminology

CMS/D0OS is neither CMS nor is it DOS; it is a composite, and its
vocabulary contains both CMS and DOS terms. CMS/DOS performs many of
the same functions as DOS, but where, under DOS, a function is initiated
by a control card, in CMsS it is initiated by a command. Many CMS/DOS
commands, therefore, have the same names as the DOS control statement
that performs the same function. In those cases where the control
statement you would wuse in DOS and the command you use in CMS are
different, the differences are explained. For the most part, whenever a
term that is familiar to you as a DOS term is wused, it has the same
meaning to CMS/D0S, unless otherwise indicated.

The CMS/DOS Environment

After you have 1loaded CMS into your virtual machine you can enter the
CMS/D0OS environment by issuing

set dos on
If you want to access a DOS system residence volume during your CMS/DOS
terminal session, you should link to and access the disk that contains
the DOS SYSRES before you issue the SET command. For exanmple, if you
share the system residence volume with other users and it is in your
directory at virtual address 390, you would issue the command

access 390 g

and then issue the SET command as follows:

Section 9. Developing DOS Programs Under CMS 159

set dos on g

to indicate that the SYSRES is located on your G-disk. If you are gcing
to use the CMS/DOS librarian facilities to access any of the libraries
on the system residence volume, you must enter the CMS/DOS environment
this way.

If you are using CMS exclusively for DOS applications, you could put
the ACCESS and SET DOS ON commands in your PROFILE EXEC.

If you are going to use Access Method Services functioms in CHMS/DOS,
or execute functions that read or write VSAM data sets, you must use the
VSAM option of the SET DOS ON command:

set dos on g (vsanm

When you are using CMS/DOS, you can use your virtual machine just as
you would if you were in the CMS environment; but you cannot execute any
CMS commands or program modules that load and/or use 0S macros. The
SCRIPT command, for example, uses 0S macros, and is therefore invalid in
the CMS/DOS environment.

You have, however, in addition to the CP and CMS commands available,
a series of commands that simulate DOS/VS functions. Except for the
DLBL and DCSLIB commands, these commands or operands should only be
issued in the CMS/DOS environment.

The CMS/DOS commands are summarized in Figure 15.

Using DOS Files on DOS Disks

You can have DOS disks attached to your virtual machine by a directory
entry or you can link to a DOS disk with the LINK command. You can use
the ACCESS command to assign a mode letter to the disk:

access 155 b
and the RELEASE command to release it:

release b
Except for VSAM disks, you cannot write on DOS disks, or update DOS
files on them. You can, however, execute programs and CMS/DOS commands
that read from these files, and you can use the LISTDS command to
display the file-ids of files on a DOS disk, for example:

listds b

You can also verify the existence of a particular file. For example, if
the file~-id is NEW.TEST.CATA you can enter

listds new test data b
You can use this form only if the file-id has 1- to 8-character
qualifiers separated by blanks. If the file-id of the DOS file you want
to verify contains embedded blanks, for example NEW.TEST DATA, then you
have to enter the LISTDS commands with a question mark:

listds ? b
CMS responds

ENTER DATA SET NAME:

160 IBM VM/370: CMS User's Guide

Command

Function

ASSGN

DLBL

DOSLIB

DOSLKED

DSERV
DOSPLI

ESERV

FCOBOL

FETCH

GLOBAL

LISTIO

OPTION

QUERY

PSERV

RSERV

SET

SSERV

Relates system and programmer logical units to physical
devices.

Relates a program ddname (filename) to a real disk file
so you can perform input/output operations omn it.

Lists or deletes phases from a CMS/DOS phase library, or
compresses the library.

Link-edits CMS TEXT files or DOS phases from system or
private relocatable libraries.

Displays the directories of DOS litraries.
An EXEC procedure that invokes the DOS/VS PL/I compiler.

An EXEC procedure that invokes the ESERV utility functicns
on edited assembler language macros.

An EXEC procedure that invokes the D0S/VS COBOL compiler.

Loads executable phases from a DOSLIB or DOS library into
storage for execution, and optionally starts execution.

When you want DOSLIBs searched for executable phases or
macro libraries searched for macro definitions, you must
identify them with the GLOBAL command.

Displays the current assignments of system and programmer
logical units, and optionally creates an EXEC file to
contain the information.

Sets or changes the options in effect for the DOS/VS
COBOL compiler.

Use QUERY command operands to list current DLBL defintions
(QUERY DLBL), to determine whether or not you are in

the CMS/DOS environment (QUERY DOS), the setting of the
UPSI byte (QUERY UPSI), the DOSLIBs identified by GLOBAL
commands (QUERY DOSLIB or QUERY LIBRARY), which options
are in effect for the COBOL compiler (QUERY OPTION), or to
find out whether you have set a virtual partition size
(QUERY DOSPART) .

Creates CMS files with a filetype of PROC from the DOS/VS
procedure library, or displays, prints or punches
procedures.

Copies a relocatable module from a DOS library and places
it in a CMS file with a filetype of TEXT, or displays,
prints, or punches modules.

1
|
|
|
|
|
|
|
|
1
|
|
|
|
|
l
|
|
l
|
{
l
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
The SET command has operands that allow you to enter or |
leave the CMS/DOS environment (SET DOS ON or SET DOS OFF),|
to set the UPSI byte (SET UPSI), and to set a virtual |
partition size (SET DOSPART) . |
|
Creates CMS COPY files from books on DOS source statement |

libraries. |
N |

Figure 15.

CMS/D0S Commands and CMS Commands with Special Operands for
CMS/DOS

Section 9. Developing DOS Programs Under CMS 161

and you can enter the exact file-id:
nev.test data
If the data set exists, you receive a response

FM DATA SET NAME
B NEW.TEST DATA

READING DOS FILES

Under CMS/DOS, you can execute programs that read DOS sequential (SAM)
files; you can also execute programs that read and write VSAM files.
You cannot, however, execute programs to read direct (DAM) or indexed
sequential (ISAM) DOS files.

Complete information on using CMS to access and manipulate VSAM files
is described in "“Section 10. Using Access Method Services and VSAM In
CMS and CMS/DOS." The discussion below lists the restrictions placed on
reading SAM files.

CMS cannot read DOS files that:
e Have the input security indicator on.

e Contain more than 16 user label and/or data extents. (If the file
has user 1labels, they occupy the first extent; therefore the file
must contain no more than 15 data extents.)

e Multivolume files are read as single-volume files. End-of-volume is
treated as end-of-file. There is no end-of-volume switching.

e User labels in user-labeled files are bypassed.

CMS does not support duplicate volume labels; you cannot access more
than one volume with +the same 6-character latel while ycu are using
CMS/DOS.

CREATING CMS FILES FROM DOS LIBRARIES

You can create CMS files from existing DOS files on DOS disks. CMS
simulates the DOS librarian functions DSERV, RSERV, SSERV, ESERV, and
PSERV with commands of the same names; you can use these CMS/DOS
commands to create CMS files from relocatable, source statement, or
procedure libraries located either on the DOS system residence volume or
in private libraries. The functions are fully described 1later in this
section.

162 IBM VM/370: CMS User's Guide

Copying DOS Disk and Tape Data Files

If you want to create CMS files from DOS files that are not cataloged in
libraries, or from DCS files on tape, you can use the MOVEFILE command.
The MOVEFILE command allows you to copy a file from one device to
another device of the same or a different type. Before issuing the
MOVEFILE command, the input and the output files must be described to
CMS with the FILEDEF command.

The MOVEFILE and FILEDEF commands are described and examples are
given of how to use them in "Section 8. Developing 0S Program Under
CMS." The procedures are the same for copying DOS files as for Os data
sets. You must however, keep the following in mind:

e Since DOS files on DOS disks do not contain BLKSIZE, RECFM, or LRECL
options, these options must be specified via the FILEDEF command;
otherwise, defaults of BLOCKSIZE=32760 and RECFM=U are assigned.
LRECL is not used for RECFM=U files.

e If a DOS file-id does not follow 0S naming conventions (that is, 1-
to 8-byte qualifiers with each qualifier separated by a period; up to
44 characters including periods), you must use the DSN ? operand of
FILEDEF and the ? operand of LISTDS to enter the DOS file-id.

Reading in Real Card Decks

If you have DOS files or source programs on cards, you can create CMS
files directly by having these cards read into the real system card
reader. You direct the cards to your virtual machine by punching a CP
ID card in this format:

ID HARMONY
and placing this card in front of your card deck. When the cards arpear
in your virtual card reader, you can read them onto your CMS A-disk with
the READCARD command:

readcard dataproc assemble

You can use the editor to remove any DOS control cards that wmay be
included in the deck.

Using Tapes in CMS/DOS

CMS/D0S does not process tape labels. In general, CMS/DOS either
bypasses labels on input tapes or passes control to a user routine to
process header labels on input tapes. CMS/DOS processes all output
tapes as tapes with no labels. Trailer labels are not supported for
input tapes or output tapes.

CMS/DOS passes control to user label routines, if there are any, for
input tapes with standard or nonstandard labels.

If a tape which is opened as an output tape already has a header

label (standard or nonstandard), CMS/DOS writes over that label when it
writes data to the tape.

Section 9. Developing DOS Programs Under CMS 163

There is no equivalent in CMS/DOS to +the DOS/VS TLBL control
statement. The TLBL label function is not required in CMS/DOS.

Using the ASSGN Command

The ASSGN and DLBL commands perform the same functions for CMS/DOS as
the ASSGN and DLBL control statements in DOS/VS. You use the ASSGN
command to designate an I/0 device for a system or programmer logical
unit (SYSxxx) and, if the device is a disk device, you can use the DLBL
command to establish a real file identification for a symbolic filename
in a program. The DLBL command is described under "Using the DLBL
Command."

In addition to using the ASSGN command to relate real I/O devices
with symbolic units, you must use it in CMS/DOS to:

e Assign SYSIN or SYSIPT for the input source file for a language
compiler when you use the DOSPLI or FCOBOL commands.

e Identify the disk, by mode 1letter, on which a private core image,
relocatable, or source statement library resides.

e Assign SYSIN or SYSIPT to the CMS disk on which an BSERV file,
containing control statements for the ESERV program, resides.

When you enter the ASSGN command, you must supply the 1logical unit
and the device, for example

assgn sys100 printer
assigns the logical unit SYS100 to the printer. When you want to make
an assignment to a disk device, you must specify the mode 1letter at
which the disk is accessed. The command

assgn sys010 b
assigns the logical unit SYS010 to your B-disk.

The system logical units you can assign and the valid device types
you can assign to them in CMS/D0OS follow.

SYSIPT, SYSRDR, SYSIN: These units can be assigned to disk (mode), TAPE,
or READER. If you make an assignment to SYSIN, both SYSRDR and SYSIPT
are also assigned the same device.

SYSLST: The system logical unit for listings can be assigned to disk

(mode) , PRINTER, or TAPE.

SISLOG: Terminal or operator output or -messages can be assigned to
PRINTER or TERMINAL. CMS/DOS always assigns SYSLOG to TERMINAL by
default, so you never have to make this assignment except when you want

to alter it.

SYSPCH: Punched output, for example text decks, can be assigned to

PUNCH, disk (mode), or TAPE.

SYSC1B, SYSRLB, SYSSLB: The system logical wunits SYSCLB, SYSRLB, and
SYSSLB can be assigned to private core image, relocatable, and source
statement libraries, respectively. The only valid assignments for these
units is to disk (mode). If you want to reference private libraries
with the DSERV, ESERV, FETCH, SSERV, or RSERV commands, you must assign

SYSCLB, SYSRLB, or SYSSLB to the disks on which the libraries reside.

164 IBM VM/370: CMS User's Guide

You can assign programmer logical units SYS(000 through SYS241 with the
ASSGN command. This deviates from DOS/VS, where the number of
programmer logical units varies according to the number of partitions.

MANIPULATING DEVICE ASSIGNMENTS
Besides assigning I/0 devices, the ASSGN command can also negate a
previous assignment:

assgn syspch ua

or specify that, for a given device, no real I/0 operation is to be
performed during the execution of a program:

assgn sys009 ign

When you release a disk from your virtual machine, any assignments made
to that disk are unassigned.

You can find out the current assignments for system and programmer
logical units with the LISTIO command, which 1lists all the system or
programmer logical units, even those that are unassigned:

listio
To list only currently assigned units, enter
listio a

To £find out the current assignment of one specific unit, for example
5YS100, enter

listio sys100
With the EXEC option of the LISTIO command, you can create a disk

file containing the 1list of assignments. The $LISTIO EXEC that is
created contains two EXEC numeric variables, &1 and &2, for each unit
listed. For example, if you entered the command

listio sys081 (exec
then the file $LISTIO EXEC may contain the record

€1 &2 SYS081 PRINTER

When you use the STAT option, LISTIO lists, for disk devices, whether
the disk is read-only or read/write, for example

listio sys100
SYS100 B R/W

indicates that SYS100 is assigned to the B-disk, which 1is a read/write
disk.

You can cancel all current assignments by 1leaving the CMS/DOS
environment and then re-entering it:

set dos off
set dos on

Section 9. Developing DOS Programs Under CMS 165

VIRTUAL MACHINE ASSIGNMENTS

When you assign a physical device type to a system or programmer logical
unit, CMS relates the device to your virtual machine configuration; you
receive an error message if you try to assign a logical unit to a device
not in your configuration. For example, if you are using the ASSGN
command to assign a logical unit to a disk file, you must specify the
access mode letter of the disk. If the disk is not accessed, the ASSGN
command fails.

For another example, if you issue
assgn syspch punch

the punch specified is your own virtual machine card punch. The actual
destination of punched output then depends on the spooling
characteristics of the punch; if it is spooled to another user or to ¥,
then no real cards are punched, but virtual card images are placed in
the virtual reader of the destination wuserid, which may be another
virtual machine or your own.

CMS supports only one reader, one punch, and one printer; you cannot
make any assignments for multiple output devices in CMS/D0S. When you
make an assignment for a logical unit that has already been assigned, it
replaces the current assignment.

Using the DLBL Command

Use the DLBL command to supply CMS/DOS with specific file identification
information for a disk file that is going to be used for input or
output. For any DLBL command you issue, you must previously have issued
an ASSGN command for the disk, specifying a system or programmer logical
unit. The basic relationship is:

assgn SYSxxx mode
dlbl filename mode DSN ? (SYSxxX

Both the SYSxxx and the mode values must match on the ASSGN and DLBL
commands; the disk on which the file resides must be accessed at mode.

The filename on the DLBL command line, called a ddname in CMS/DOS,
corresponds to the symbolic name for a file in a program. If you want to
reference a private DOS library, you must use one of the following
ddnanmes:

System
Logical Unit Filename
SYSCLB 1JSYSCL
SYSRLB IJSYSRL
SYSSLB IJSYSSL

ENTERING FILE IDENTIFICATIONS

When you issue the DLBL command you must identify the file, by file-id
(for a DOS file) or by file identifier (for a CMS file). The keywords
DSN and CMS indicate whether it is a DOS file or a CHMs file,
respectively.

166 IBM VM/370: CMS User's Guide

If the file is a DOS file residing on a DOS disk, you can enter the
DLBL command in one of two ways. For example, for a file named
TEST.INPUT you could enter either:

assgn sys101 d
dlbl infile 4 dsn test input (sys10t

assgn sys101 4
dlbl infile 4 dsn ? (sSys101

ENTER DATA SET NAME:
test.input

For any DOs file with a file-id@ that contains embedded blanks or
hyphens, you must use the "DSN ?" form.

When you issue a DLBL command for a CMS file, you enter the filename
and filetype following the keyword CMS:

assgn sys102 a _
dlbl outfile a cms new output (sys102

In this example, if SYS102 is defined as an output file for a progranm,
the output is written to your CMS A-disk in a file named NEW OUTPUT.

You can, for convenience, use a CMS default file identifier. If you
enter

dlbl outfile a cms (sys102

then the output filetype defaults to that of the ddname and the filename
to FILE. So, this output file is named FILE OUTFILE.

You can clear a DLBL definition for a file by using the CLEAR operand of
the DLBL command:

dlbl outfile clear

To clear all existing definitions, except those entered with the PERM
option, you can enter

dlbl * clear
This command is issued by the assembler and the language processors when
they complete execution. Definitions entered with the PERM option must
be individually cleared.
Whenever you use the HX Immediate command to halt the execution of a
program, the DLBL definitions in effect are cleared, including those
entered with the PERM option.

You can find out what definitions are currently in effect by issuing
the DLBL command with no operands:

dibl

or, you can use the QUERY command with the DLBL operand.

Section 9. Developing DOS Programs Under CMS 167

Using DOS Libraries in CMS/DOS

CMS/DOS provides you with the capability of using various types of files
from DOS system or private libraries. You can copy, punch, display at
the terminal, or print:

e Books from system or private source statement libraries using the
SSERV command.

e Relocatable modules from system or private relocatable 1libhraries
using the RSERV command.

e Procedures from the system procedure library using the PSERV
command.

You can also:

e Copy and de-edit macros from system and private E sublibraries using
the ESERV command.

e Access the directories of system or private libraries using the DSERYV
command.

e Link-edit relocatable modules from system or private relocatable
libraries with the DOSLKED command.

e Read core image phases from system or private core image libraries
into storage for execution using the FETCH command.

THE SSERV COMMAND

If you have cataloged source programs or copy files on the system source
statement library and you want to use CMS to modify and test them, you
can copy them into CMS files using the SSERV command. For example,
suppose you want to copy a book named PROCESS from the A sublibrary on
the system residence volunme. The DOS system residence 1is in your
virtual machine configuration at virtual address 350, and you have
accessed it as your F-disk. First, to indicate to CMS/DOS that the
system residence is on your F-disk, you enter

set dos on f

then you can enter the SSERV command, specifying the sublibrary
identification and the book name:

SServ a process

This creates, from the A sublibrary, a file named PROCESS COPY and
places it on your A-disk. If +the book contained assembler language
source statements you would want the filetype to be ASSEMBLE, so you may
enter

Sserv a process assemble
If you want to copy a book from a private source statement library,
you must first use the ASSGN and DLBL commands to make the library known

to CMs/DOS. For example, to obtain a copy file from a private library
on a DOS disk accessed as your D-disk, enter:

168 IBM VM/370: CMS User's Guide

assgn sysslb d
dlbl ijsyssl 4@ dsn ? (sysslb
ENTER DATA SET NAME:
program.test library

Now, when you enter the SSERV command
sserv t setup copy

the book named SETUP in the T sublibrary of PROGRAM.TEST LIBRARY is
copied into a CMS file named SETUP COPY.

THE RSERV COMMAND

In CMS/D0OS, to manipulate relocatable modules that have been catalcged
either on the system or a private relocatable library you must first
copy them into CMs files with the RSERV command. You can link-edit
modules directly from DOS relocatable libraries, but if you want to add
or modify linkage editor control statements for a module, you must place
the control statements in a CMS file.

If you are copying a relocatable module from the system relocatable
library, then you should make sure that you have indicated the systenm
residence disk when you entered the CMS/DOS environment:

set dos on £

then you can issue the RSERV command specifying the name of the
relocatable module you want to copy:

rserv rtna

The execution of this command results in the creation of a CMS file
named RTNA TEXT on your A-disk.

If you want to copy a relocatable module from a private relocatable
library, you must first use the ASSGN and DLBL commands to make the
private library known to CMS/DOS:

assgn sysrlb d
dlbl ijsysrl 4 dsn reloc 1lib (sysrlb

Then, issue the RSERV command for a specific module in that library:
rserv testrtna

to create the CMS file TESTRTNA TEXT from the module named TESTRTNA.

THE PSERV COMMAND

If you want to copy DOS cataloged procedures intoc CMS files to use, for
example, in preparing job streams for a DOS/VS virtual machine, you can
use the PSERV command:

pserv prepjob
This command creates a CMS file on your A-disk; the file is named
PREPJOB PROC. To copy a procedure from the procedure 1library you must

Section 9. Developing DOS Programs Under CMS 169

have entered the CMS/D0OS environment specifying a disk mode for the
system residence volunme.

You cannot execute DOS/VS procedures directly from +the CMS/DOS
environment. However, if you modify a procedure, you can punch it to a
virtual machine that is running a DOS/VS system, and execute it there.

THE ESERV COMMAND

The CMS/DO0S ESERV command is actually an EXEC procedure that calls the
DOS/VS ESERV utility program. To use the ESERV program, you first must
use the CMS Editor to create a file with a filetype of ESERV that
contains the ESERV contrcl statements you want to execute. For example,
if you want to write a de-edited copy of the macro DTFCD onto your
A-disk, you might create a file named DTFCD ESERV, with the recorad:

PUNCH E.DTFCD
As when you submit ESERV jobs in DOS/VS, column 1 must be blank.

Then, you must assign SYSIN to the device on which the ESERV source
file resides, usually your A-disk:

assgn sysin a

Then you can enter the ESERV command specifying the filename of the
BSERV file:

eserv dtfcd

No other ASSGN commands are required; the CMS/DOS ESERV EXEC makes
default assignments for SYSPCH and SYSLST to disk.

To copy and de-edit macros from a private E sublibrary, you must
first issue the ASSGN and DLBL commands to identify the 1library, for
examnple

assgn sysslb c
dlbl ijsyssl c dsn test macros (sysslb

The SYSLST output is contained in a CMS file with the same filename
as the ESERV file and a filetype of LISTING; you must examine the
LISTING file to see if the ESERV program executed successfully. You can
either edit it (using the CMS Editor), or display its contents with the
TYPE command:

type dtfcd listing

The SYSPCH output is contained in a file with the same name as the
BESERV file and a filetype of MACRO. If you want to punch ESERV output
to your virtual card punch, make an assignment of SYSPCH to PUNCH.

When you wuse the PUNCH or DSPCH ESERV control statements, CATAL.S,
END, or /* records may be inserted in the output file. When you use the
MACLIB command to add the MACRO file to a CMS macro library, these
statements are ignored.

See "Using Macro Libraries"® for information on creating and
manipulating CMS macro libraries.

170 IBM VM/370: CMS User's Guide

THE DSERV COMMAND

You can use the DSERV command to examine the contents of system or
private libraries. If you do not specify any options with it, the DSERV
command creates a disk file, named DSERV MAP, on your A-disk. You can
use the PRINT or TERM options to specify that the directory 1list is
either to be printed on your spooled printer or displayed at your
terminal. You can also use the SORT option to create a 1list in
collating sequence.

In order to examine a system directory, you must have entered the
CMS/DOS environment specifying the mode letter of the DOS systen
residence:

set dos on £

If you want to examine the directory of a private source statement,
core image, or relocatable library you must issue the ASSGN and DLBL
comnands establishing SYSSLB, SYSCLB, or SYSRLB, before using the DSERV
command.

For example, to display at your terminal an alphameric list of
procedures cataloged on the system procedure library, you would issue

dserv pd (sort term
If the directory you are examining is for a core image library, you
can specify a particular phase name to ascertain the existence cf the
phase:

dserv cd phase $$bopen (term

To list the directory of a private source statement library, you
would first issue the ASSGN and CLBL commands:

assgn sysslb b
dlbl ijsyssl b dsn test source (sysslb

then enter the DSERV command
dserv sd

The CMS file, DSERV MAP A, that is created in this example contains the
directory of the private source statement likrary TEST.SOURCE.

USING DOS CORE IMAGE LIBRARIES

You can load core image phases from DOS core image libraries into
virtual storage and execute them under CMS/DOS. Since CMS cannot write
directly to DCS disks, linkage editor output under CMS/DOS is placed in
a special cMS file called a DOSLIB. When you execute the FETCH command
in CMS/D0OS you can load phases from either system or private DOS core
image libraries as well as from . CMS DOSLIBs. More information omn using
the FETCH command is contained under "Executing Programs in CMS/DOS."

Section 9. Developing DOS Programs Under CHMS 171

Using Macro Libraries

DOS/VS macro libraries cannot be accessed directly by the VM/370
assembler. If you want to assemble DOS programs in CMS/DOS that use DOS
macro or copy files that are on the system or a private macro library
you must first create a CMS macro library (MACLIB) containing the macros
you wish to use. Since the process of creating a CMS MACLIB from the
DOS system source statement 1library (E sublibrary) can be very
time-consuming, you should check with your installation's systenm
programmer to see if it has already been done, and to verify the
filename of the macro library, so that you can use it in CMS/DOS.

Note: The DOS/VS PL/I and DOS/VS COBOL compilers executing in CMS/DOS
cannot read macro or copy files from CMS MACLIBS.

If you want to extract DOS system macros to modify them for your
private use, or if you want to use macros from a private library in CMsS,
you must use the procedure outlined below to create the MACLIB files.

CMS MACLIBS

A CMS macro library has a filetype of MACLIB. You can create a MACLIB
from files with filetypes of MACRO or COPY. A MACRO file may contain
macro definitions; COPY files contain predefined source statements.

When you want to assemble a source program that uses macro or copy
definitions, you must ensure that .the library containing the code is
identified before you invoke the assembler. Otherwise, the 1library is
not searched. You identify 1libraries to be seaxrched using the GLOBAL
command. For example, if you have two MACLIBs that contain your private
macros and copy files whose names are TESTMAC MACLIB and TESTCOPY
MACLIB, you would issue the command

global maclib testmac testcopy

The libraries you specify on a GLOBAL command line are searched in the
order you specify then. A GLOEAL command remains in effect for the
remainder of your terminal session, or until you IPL CMS. To find out
what macro libraries are currently available for searching, issue the
command

query maclib

You can reset the libraries or the search order by reissuing the GLOBAL
command.

CREATING A CMS MACLIB

To create a CMS macro library, each macro or copy file you want included
in the MACLIB must first be contained in a CMS file with a filetype of
COPY or MACRO. If you are creating a CMS MACLIB file from a DOS library
you must use the SSERV command to copy a file from any source statement
library other than an E sublibrary, or use the ESERV command to copy and
de-edit a macro from an E sublibrary. The SSERV command uses a default
filetype of COPY; the ESERV command uses a default filetype of MACRO.

The following example shows how to copy macros from various sources

and shows how to create and use the CMS MACLIB that contains these
macros.

172 IBM VM/370: CMS User's Guide

1. Enter the CMS/DOS environment with the DOS system residemnce on a
disk accessed as mode C:

set dos on c

2. Copy the macro book named OPEN from the A sublibrary of the systenm
source statement library:

sserv a open
3. Establish a private source statement litrary:
access 351 d
assgn sysslb d
dlbl ijsyssl 4 dsn ? (sysslb
test source.lib

4. 1Issue the SSERV command for a macro in the M sublibrary of TEST
SOURCE.LIB:

sserv m releas
5. Create an ESERV file to copy from the E suklibrary:
edit contrl eserv
NEW FILE
EDIT:
input punch contrl
file
6. Execute the ESERV command:

assgn sysin a
eserv contrl

7. Create a CMS macro library named MYDOSMAC from the files Jjust
created, which are named OPEN COPY, RELEAS COPY, and CONTRL MACRO:

maclib gen mydosmac open releas contrl
8. To use these macros in an assembler language program, you must
indicate that this MACLIB is accessible before assembling a source
file:

global maclib mydosmac
THE MACLIB COMMAND

The MACLIB command performs a variety of functions. You use it to:

Create the MACLIB (GEN function)

Add, delete, or replace members (ADD, DEL, and REP functions)
Compress the MACLIB (COMP function)

List the contents of the MACLIB (MAP function)

e 0 o O

Descriptions of these MACLIB command functions follow.

GEN Function: The GEN (generate) function creates a CMS macro library

from input files specified on the command line. The input files must
have filetypes of either MACRO or COPY. For example:

maclib gen mymac get pdump put regequ

Section 9. Developing DOS Programs Under CMS 173

creates a macro library with the file identifier MYMAC MACLIB A1 from
macros existing in the files with the file identifiers:

GET (MACRO),PDUMP (MACRO)},PUT (MACRO|,and REGEQU f MACRO
CoPY COPY COPY COPY

If a file named MYMAC MACLIB A1 already exists, it is erased.

Assume that the files GET MACRO, PDUMP COPY, PUT MACRO, and REGEQU
COPY exist and contain macros in the following form:

GET MACRC PDUMP COPY PUT MACRO REGEQU COPY
GET *COPY PDUMP PUT XREG
PDUMP
WAIT *COPY WAIT YREG
WAIT

The resulting file, MYMAC MACLIB A1, contains the members:

GET WAIT
WAIT PUT
PDUMP REGEQU

The WAIT macro, which appears twice in the input to the command, also
appears twice in the output. The MACLIB command does not check for
duplicate macro names. If, at a later time, the WAIT macro is requested
from MYMAC MACLIB, the first WAIT macro encountered in the directory is
used.

When COPY files are added to MACLIBs, the name of the library member
is taken from the name of the COPY file, or from the *COPY statement, as
in the file PDUMP COPY, above. Note that although the file REGEQU COPY
contained two macros, they were both included in the MACLIB with the
name REGEQU. When the input £file is a MACRO file, the member name is
taken from the macro prototype statement in the MACRO file.

ADD Function: The ADD function appends new members to an existing macro
library. For example, if MYMAC MACLIB A1 exists as created in the
example in the explanation of the GEN function and the £file DTFDI COPY
exists as follows:

*COPY DTFDI
DTFDI macro definition
*COPY DIMOD
DIMOD macro definition
if you issue the command
maclib add mymac dtfdi

the resulting MYMAC MACLIB A1 contains the members:

GET PUT

WAIT REGEQU
PDUMP DTFDI
WAIT DIMOD

REP Function: The REP (replace) function deletes the directory entry for
the macro definition in the files specified. It then appends new macro
definitions to the macro library and creates new directory entries. For
example, assume that a macro library TESTMAC MACLIB contains the members

A, B, and C, and that the following command is entered:

maclib rep testmac a c

174 IBM VM/370: CMS User's Guide

The files represented by file identifiers A MACRO and C MACRO each have
one macro definition. After execution of the command, TESTMAC MACLIB
contains members with the same names as before, but the contents of A
and C are different.

DEL Function: The DEL (delete) function removes the specified macrc nanme
from the macro library directory and compresses the directory so there
are no unused entries. The macro definition still occupies space in the
library, but since no directory entry exists, it cannot be accessed or
retrieved. If you attempt to delete a macro for which two macro
definitions exist in the macro library, only the first one encountered
is deleted. For examfple:

maclib del mymac get put wait dtfdi

deletes macro names GET, PUT, WAIT, and DTFDI from the directory of the
macro library named MYMAC MACLIE. Assume that MYMAC exists as in the ADD
function example. After the above command, MYMAC MACLIB contains the
following members:

PDUMP
WAIT
REGEQU
DIMOD

COMP Function: Execution of a MACLIB command with the DEL or REP
functions can leave unused space within a wmacro 1library. The COMP
(compress) function removes any macros that do not have directory
entries. This function uses a temporary file named MACLIB CMSUT1. For
example, the command:

maclib comp mymac
compresses the library MYMAC MACLIB.

MAP Function: The MAP function creates a list containing the name of
each macro in the directory, the size of the macro, and its position
vithin the macro library. If you want to display a list of the members
of a MACLIB at the terminal, enter the command

maclib map mymac (term
The default option, DISK, creates a file on your A-disk which has a
filetype of MAP and a filename equal to the filename of the MACLIB. If

you specify the PRINT option, then a copy of the map file is spooled to
your virtual printer as well as being written onto disk.

Mapipulating MACLIB Members

The following CMS commands supply a MEMBER option, which allows you to
reference individual members of a MACLIB:

PRINT (to print a member)
PUNCH (to punch a member)
TYPE (to display a member)
FILEDEF (to establish a file definition for a member)

You can use the CMS Editor to create the MACRO and COPY files and
then use the MACLIB command to place them in a library. Once they are
in a library, you can erase the original files.

Section 9. Developing DOS Programs Under CMS 175

To extract a member from a macro library, you can use either the
PUNCH or the MOVEFILE command. If you use the PUNCH command you can
spool your virtual card punch to your own virtual reader:

cp spool punch to *
then punch the member:

punch testmac maclib (member get noheader
and read it back onto disk:

readcard get macro
In the above example, the member was punched with the NOHEADER option of
the PUNCH command, so that a name could be assigned on the READCARD
command line, If a header had been created for the file, it would have

indicated the filename and filetype as GET MEMBER.

If you use the MOVEFILE command, you must issue a file definition for
the input member name and the output macro or copy file before entering
the MOVEFILE command:

filedef inmove disk testcopy maclib (member enter
filedef outmove disk enter copy a
movefile

This example copies the member ENTER from the macro 1library TESTCOPY
MACLIB A into a CMS file named ENTER COPY.

When you use the PUNCH or MOVEFILE commands to extract members from
CMS MACLIBs, each member is followed by a // record, which is a MACLIB
delimiter. You can edit the file and wuse the DELETE subcommand to
delete the // record.

System MACLIBsS

The macro libraries that are on the system disk contain CMS, DOS, and 0S
assembler language macros. The MACLIBs are:

¢ CMSLIB MACLIB contains the CMS macros.
e DOSMACRO MACLIB contains DOS/VS macros that CMS/DOS routines use.

e OSMACRO MACLIB, OSMACRO1 MACLIB, and TSOMAC MACLIB are used by 0OS
programmers.

DOS Assembler Language Macros Supported

Figure 16 1lists the DOS/VS Assembler Language macros supported by
CMS/D0S. You can assemble source programs that contain these macros
under CMS/DOS, provided that you have the macros available in either
your own or a shared CMS macro 1library. The macros whose functions are
described in the "Function" column with the term ™"no-op" are supported
for assembly only; when you execute programs that contain these macros,
the DOS/VS functions are not performed. To accomplish the macro
function you must execute the program in a DOS/VS virtual machine.

176 IBM VM/370: CMS User's Guide

Macro
CALL
CANCEL
CDLOAD
CHECK
CLOSE/
CLOSER

CNTRL
COMRG

DEQ
DEQB
DTFxx1
DUMP
ENQ
ENQB
EOQJ
ERET
EXCP
EXIT PC
FCEPGOUT
FETCH

FREEVIS
GENL
GET
GETVIS
GETIME
JDUMP
LOAD
MvCoN
NOTE
OPEN/
OPENR
PAGEIN
PDUNP
PFIX
PFREE
POINTR
POINTS
POINTW
POST
PRTOV
PUT
PUTR
READ
RELEASE
RELPAG
RELSE
RETURN
RUNMODE
SECTVAL
SEIZE
SETIME
SETPFA
STXIT AB
PC
IT
oc

86

Function

Pass control to another program

Terminate processing

Load a VSAM phase

Verify completion of a read or write operation
Deactivate a data file’

Control a physical device

Return address of background partition
communication region

no-op

Release a resource

Establish file definitions

Dump storage and registers and terminate processing

no-op

Protect a resource

Terminate processing normally
Provide an error routine

Execute a channel program

Return from program check routine
no—-op

Load and pass control to a phase
Load and pass control to a logical transient
Release user free storage
Generate a phase directory list
Access a sequential file

Obtain user free storage

Get the time of day

Dump storage and registers and terminate processing

Read a phase into storage

Modify bytes in the partition communication region

Manage data set access
Activate a data file

no-—op

Dump storage and registers and continue processing

no-op

no—-op

position a file for reading

Reposition a file to its beginning

position a file for writing

Post the Event Control Block

control printer overflow

Write to a sequential file

Communicate with the system operator

Access a sequential file

Release a system resource

no—op

skip to begin reading next klock

Return control to calling program

Check if program is running real or virtual

Obtain a sector number

no—op

no—op

no—op »

Provide or terminate linkage to abnormal ending
routine

no-—-op

no-op

-

|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(
|
|
|
|
|
(
|
|
|
(
|
|
|
|
|
1
I
|
|
|
|
|
|
|
|
|
|
{
|
{

1The DOS declarative macros supported are:
DTFCN, DTFCD, DTFPR, DTFDI, DTFMT, DTFSD, DTFCP, and DTFSL

h-————-——_———_—————_————-———-————-———-_—-————————-———-——-—-——-.———-—.——..——————

Pigure 16. DOS/VS Macros Supported by CMS (Part 1 of 2)

Section 9. Developing DOS Programs Under CMS

177

Macro SVC Function

1The DOS logic modules supported are:
CDMOD, PRMOD, DIMOD, MTMOD, SDMODxx, and CPMOD

L 1
| M |
{ TRACK FREE 36 no-op |
| TRACK HOLD 35 no-op {
| TRUNC - Skip to begin writing next Lklock |
| TTIMER 52 Return a 0 in Register 0 (effectively a noop) (
| USE 63 Reserve a system resource |
| WAIT 07 Wait for the completion of I/0 |
| WRITE - Write to a sequential file |
{ xxMOD! - Create Logical IOCS routine inline |
| |
| |
| |
L (]

Figure 16. DOS/VS Macros Supported by CMS (Part 2 of 2)

Assembling Source Programs

If you are a DOS/VS Assembler Language programmer using CMS/DOS, you
should be aware that the assembler used is the VM/370 assembler, not the
DOS/VS assembler. The major difference is that the VM/370 assembler,
invoked by the ASSEMBLE command, is designed for interactive use, so
that when you assemble a program, error messages are displayed at your
terminal when compilation is comrleted, and you do not have to wait for
a printed listing to see the results. You can correct your source file
and reassemble it immediately. When 7your program assembles without
@rrors, you can print your listing.

To specify options to be used during the assembly, you enter them on
the ASSEMBLE command line. So, for example, if you do not want the
output LISTING file placed on disk, you can direct it to the printer:

assemble myfile (print

All of the ASSEMBLE command options are listed in VM/370: CMS Command
and Macro Reference.

When you invoke the ASSEMBLE command specifying a file with a
filetype of ASSEMBLE, CMS searches all of your accessed disks, using the
standard search order, until it locates the file. When the assembler
creates the output LISTING and TEXT files, it writes them onto disk
according to the following priorities:

1. If the source file is on a read/write disk, the TEXT and LISTING
files are written onto the same disk.

2. If the source file is on a read-only disk that is an extension of a
read/write disk, the TEXT and LISTING files are written onto the
parent disk.

3. If the source is on any other read-only disk, the TEXT and LISTING
files are written onto the A-disk.

In all of the above cases, the filenames assigned to the TEXT and
LISTING files are the same as the filename of the input file.

The output files used by the assembler are defined via FILEDEF
commands issued by CMS when it calls the assembler. If you issue a
PILEDEF command using one of the assembler ddnames before you issue the
ASSEMBLE command, you can override the default file definitions.

178 IBM VM/370: CMS User's Guide

The ddname for the source input file is ASSEMBLE. If you enter

filedef assemble reader
assemble sample

then the assembler reads your input £ile from your card reader, and
assigns the filename SAMPLE to the output TEXT and LISTING files. You
can use this method to assemble programs directly from DOS sequential
files on DOS disks.

LISTING and TEXT are the ddnames assigned to the SYSLST and and
SYSPCH output of the assembler. You might issue file definitions to
override these defaults as follows:

filedef listing disk assemble listfile a
filedef text disk assemble textfile a
assemble source

When these commands are executed, the output from the assembly of the
file SOURCE ASSEMBLE is written to the disk files ASSEMBLE LISTFILE and
ASSEMBLE TEXTFILE.

Link-editing Programs in CMS/DOS

When the assembler or one of the language compilers executes, the object
module produced is written to a CMS disk in a file with a filetype of
TEXT. The filename is always the same as that of the input source
file. These TEXT files (sometimes referred to as decks, although they
are not real card decks) can be used as input to the linkage editor, or
can be the target of an INCLUDE linkage editor control statement.

You can invoke the CMS/DOS linkage editor with the DOSLKED command,
for example:

doslked test testlib

wvhere TEST is the is the filename of either a DOSLNK or TEXT file (that
is, a file with a filetype of either DOSLNK or TEXT), or the name of a
relocatable module in a system or private relocatable library. TESTLIB
indicates the name of the output file which, in CMS/DOS, is a phase
library with a filetype of DOSLIB.

When you issue the DOSLKED command, CMS first searches for a file
with the specified name and a filetype of DOSLNK. If none are found, it
searches the private relocatable library, if you have assigned one (you
must issue an ASSGN command for SYSRLB and use the ddname IJSSYRL in a
DLBL statement). If the module is still not found, CMS searches all of
your accessed disks for a file with the specified name and a filetype of
TEXT. Last, CMS searches the system relocatakle library, if it is
available (you must enter the CMS/DOS environment specifying the mode
letter of the DOS/VS system residence if you want to access the systenm
libraries).

LINKAGE EDITOR INPUT

You can place the 1linkage editor control statements ACTION, PHASE,
INCLUDE, and ENTRY in a CMS file with a filetype of DOSLNK. When you
use the INCLUDE statement, you may specify the filename of a CMS TEXT
file or the name of a module in a DOS relocatakle library:

INCLUDE XYZ

Section 9. Developing DOS Programs Under CHMS 179

or you may use the INCLUDE control statement to indicate that the object
code follows:

INCLUDE
(CMS TEXT file)

A typical DOSLNK file, named CONTROL DOSLNK, might contain the
following:

ACTION REL
PHASE PROGMAIN,S
INCLUDE SUBA
PHASE PROGA,*
INCLUDE SUBB

¥hen you issue the command
doslked control

the linkage editor searches the following for the object files SUBA and
SUBB:

» A DOS private relccatable library, provided you have issued the ASSGN
and DLBL commands to identify it:

assgn sysrlb d
dlbl ijsysrl 4 dsn ? (sysrlb

o Your CMS disks for files with filenames SUBA and SUBB and a filetype
of TEXT

» The system relocatable library located on the DOS system residence
volume (if it is available)

Link-editing IEXT Files

When you vwvant to link-edit individual CMS TEXT files, you can insert
linkage editor control statements in the file using the CMs Editor and
then issue the DOSLKED command:

edit rtnb text

EDIT:

input include rtnc
file

doslked rtnb mydoslib

#hen the above DOSLKED command is executed, the CMS file RTNB TEXT is
used as linkage editor input, as long as there is no file named RTNB
DOSLNK. The ACTIOFN statement, however, is not recognized in TEXT
files.

You can also link-edit relocatable modules directly from a DOS system
or private relocatable library, provided that you have identified the
library. If you do this, however, you cannot provide control statements
for the linkage editor.

If you want to link-edit a relocatable module from a DOS private
library and you wvant, also, to add linkage editor control statements to
it, you could use the following procedure:

1. Identify the 1library and use the RSERV command to copy the

relocatable module into a CMS TEXT file. In this example, the
module RTNC is to be copied from the library OBJ.MODS:

180 IBM VA/370: CMS User's Guide

assgn sysrlb e
dlbl ijsysrl e dsn obj mods (sysrlt
rserv rtnc

2. Create & DOSLNK file, insert the linkage editor eontrol statements,
and copy the TEXT file created in step 1 into it using the GETFILE
subcommand.

edit rtmc doslnk

input action rel
getfile rtnc text a
file

3. Invoke the linkage editor with the DOSLKED commard.
doslked rtnc mydoslib

Alternatively, you could create a DOSLNK file with the following
records:

ACTION REL
INCLUDE RTNC

and link-edit the module directly from the relocatable library. 1If you
do not need a copy of the module on a CMS disk, you might want to use
this method to conserve disk space.

- When the linkage editor is reading modules, it may encounter a blank
card at the end of a file, or a * (comment) card at the beginning of a
file. In either case, it issues a warning message indicating am invalid
card, but continues to complete the link-edit.

LINKAGE EDITOR OUTPUT: CMS DOSLIBS

The CﬁS/DOS linkage editor always places the link-edited executable
phase in a CHMS library with a filetype of DOSLIB. You should specify
the filename of the DOSLIB when you enter the DOSLKED command:

doslked prog0 templib

where PROGO is the relocatable module you are 1link-editing and TEMPLIB
is the filename of the DOSLIEBE.

If you do not specify the name of a DOSLIB, the output is placed in a
DOSLIB that has the same name as the DOSLNK or TEXT file being
link~edited. . In the above example, a CMS DOSLIB is created named
TEMPLIB DOSLIB, or, if the file TEMPLIB DOSLIB already exists, the phase
PROGO is added to it.

DOSLIBs can contain relocatable and core image phases suitable for
execution in CMS/DOS. Before you can access phases in it, you nust
identify it to CMS with the GLOBAL command:

global doslib templib permlib

When CMS is searching for executable phases, it searches all DOSLIBs
specified on the last GLOBAL DOSLIB command line. If you have named a
number of DOSLIBs, or if any particular DOSLIB is very large, the time
required for CMS to fetch and execute the phase increases. You should
use separate DOSLIBs for executable phases, whenever possible, and then
specify only the DOSLIBs you need on the GLOBAL comamand.

Section 9. Developing DOS Programs Under CHMS 181

When you 1link-edit a module into a DOSLIB that already contains a
phase with the same name, the directory entry is updated to point to the
new phase. However, the space that was occupied by the old phase is not
reclaimed. You should periodically issue the command

doslib comp libname
where libname is the filename of the DOSLIB, to compress the DOSLIB and

delete unused space.

Linkage Editor Maps

The DOSLKED command also produces a linkage editor map, which it writes
into a CMS file with a filename that is that of the name specified on
the DOSLKED command line and a filetype of MAP. The filemode is always
A5. If you do not want a linkage editor map, use the NOMAP option on
the ACTION statement in a DOSLNK file.

Executing Programs in CMS/DOS

After you have assembled or compiled a source program and link-edited
the TEXT files, you can execute the phases in your CMS virtual machine.
You may not, however, be able to execute all your DOS programs directly
in CMS. There are a number of execution-time restrictions placed on your
virtual machine by VM/370. You canndt execute a program that uses:

e Multitasking

e More than one partition

e Teleprocessing

e ISAM macros to read or write files

The above is only a partial list, representing those restrictions with
which you might be concerned. For a complete list of restrictions, see
the VM/370: Planning and System Generation Guide.

EXECUTING DOS PHASES

You can load executable phases into your CMS virtual machine using the
FETCH command. Phases mnust be link-edited before you 1load them. When
you issue the FETCH command, you specify the name of the phase to be
loaded:
fetch myprog
Then you can begin executing the program by issuing the START command:
start

Or, you can fetch a phase and begin executing it on a single command
line:

fetch prog2 (start

When you use the FETCH command without the START option, CMS. issues a
message telling you at what virtual storage address the phase is loaded:

PHASE PROG2 ENTRY POINT AT LOCATION 020000

182 IBM VM/370: CMS User's Guide

Location X'20000' is the starting address of the user program area for
CMS; relocatable phases are always loaded starting at this address
unless you specify a different address using the ORIGIN option of the
FETCH command:

fetch prog3 (origin 22000
start

The program PROG3 executes beginning at location 22000 in the CMS user
program area.

SEARCH ORDER FOR EXECUTABLE PHASES

When you execute the FETCH command, CMS searches for the phase name you
specify in the following places:

1. In a DOS/VS private core image library on a DOS disk. If you have
a private library you want searched for phases, you must identify
it using the ASSGN and DLBL commands, using the logical unit
SYSCLB:

assgn sysclb d
dlbl ijsyscl 4@ dsn ? (sysclb

2. In CMS DOSLIBs on CMS disks. If 7you want DOSLIBs searched for
phases, you must use the GLOBAL command to identify them to
CMS/DOS:

global doslib templib mylib
You can specify up to eight DOSLIBs on the GLOBAL command line.

3. On the DOS system residence core image library. If you want the
system core 1image library searched you must have entered the
CMS/DOS environment specifying the mode letter of the systenm
residence:

set dos on z
When you want to fetch a core image phase that has copies in both the

core image library and a DOSLIB, and you want to fetch the copy from the
CMS DOSLIB, you can bypass the core image 1library by entering the
command

assgn sysclb ua
When you need to use the core image library, enter

assgn sysclb c

where C is the mode letter of the system residence volume. You do not
need to reissue the DLBL command to identify the library.

MAKING I/O DEVICE ASSIGNMENTS

If you are executing a program that performs I/0, you can use the ASSGN
command to relate a system or programmer logical unit to a real I/O
device. As in DOS/VS, device type assignment in CMS/DOS is dependent on
device specifications in the progran.

Section 9. Developing DOS Programs Under CMS 183

assgn sys052 reader
assgn syslst printer

In this example, your program is going to read input data from your
virtual card reader; the output print file is directed to your virtual
printer. If you want to reassign these units to different devices, you
must be sure that the files have been defined as device independent.

If you assign a logical unit to a disk, you should identify the file
by using the DLBL command. On the DLBL command, you must always relate
the DLBL to the system or programmer logical wunit previously specified
in an ASSGN command:

assgn sys015 b
dlbl myfile b dsn ? (sys015

When you enter the DLBL command with the ? operand you are prompted to
enter the DOS file-id.

You must issue all of the ASSGN and DLBL commands necessary for your

program's I/0 before you issue the FETCH command to locad the progranm
phase and begin executing.

SPECIFYING A VIRTUAL PARTITION SIZE

For most of the programs that you execute in CMS, you do not need to
specify how large a partition you want a program to execute in. When
you issue the START command or the START option on the FETCH command,
CMS calculates how much storage is available in your virtual machine and
sets a partition size.

In some instances, however, you may want to control the partition
size, as a performance consideration (some programs may run better in
smaller partitioms). You can set the partition size with the DOSPART
operand of the SET command. For example, after you enter the command

set dospart 300k

all programs that you subsequently execute will execute in a 300K
partition. If you enter '

set dospart off

then CMS calculates a partition size when you execute a program. This is
the default setting.

SETTING THE UPSI BYTE

If your program uses the User Program Switch Indicator (UPSI) byte, you
can set it by using the UPSI operand of the CMS SET command. The UPSI
byte is initially binary zeros. To set it to 1s, enter
set upsi 11111111
To reset it to zeros, enter
set upsi off
Any value you set remains in effect for the duraticn of your terminal

session, unless you reload CMS (with the IPL command).

184 IBM VM/370: CMS User's Guide

DEBUGGING PROGRAMS IN CMS/DOS

You can debug your DOS programs in CMS/DOS using the facilities of CP
and CMS. By executing your programs interactively, yocu can more quickly
determine the cause of an error or program abend, correct it, and
attempt to execute a program again.

The CP and CMS debugging facilities are described in "Section 11. How
VM/370 Can Help You Debug Your Programs." Additional information for
assembler language programmers is in "Section 13. Programming for the
CMS Environment."

USING EXEC PROCEDURES IN CMS/DOS

During your program development and testing cycle, you may want to
create EXEC procedures to contain sequences of CMS commands that you
execute frequently. For example, if you need a number of MACLIBs,
DOSLIBs, and DLBL definitions to execute a particular program, you might
have an EXEC procedure as follows:

ECONTROL ERRCR TIME

S ERROR &EXIT &RETCODE

GLOBAL MACLIB TESTLIB DOSMAC
ASSEMBLE TESTA

PRINT TESTA LISTING

DOSLKED TESTA TESTLIB

GLOBAL DOSLIB TESTLIB PROGLIE
ACCESS 200 E

ASSGN SYS010 E

&BEGSTACK
DOS.TEST3.STREAM. BETA

EEND

DLBL DISK1 E DSN ? (SYS010
ASSGN SYsS011 PUNCH

CP SPOOCL PUNCH TO *

ASSGN SYS012 A

DLBL OUTFILE A CMS TEST DATA
FETCH TESTA (START

E€IF ERETCODE = 100 &GOTO -RET100
&IF ERETCODE = 200 &GOTO —-RET200
SEXIT &RETCODE

-RET100 &CONTINUE

-RET200 &CONTINUE

The &CONTROL and 6&ERROR control statements in the EXEC procedure
ensure that if an error occurs during any part of the EXEC, the
remainder of the EXEC does not execute, and the execution summary of the
EXEC indicates the command that caused the error.

Note that for the DLBL command entered with the DSN ? operand, you
must stack the response before issuing the DLBL command. In this
example, since the DOS file-id has more than 8 characters, you must use
the &BEGSTACK control statement to stack it. When you use the &STACK
control statement, the EXEC processor truncates all words to 8
characters.

Section 9. Developing DOS Programs Under CMS 185

When your program is finished executing, the EXEC special variable
ERETCODE indicates the contents of general register 15 at the time your
program exited. You can use this value to perform additional steps in
your EXEC procedure. Additional steps are indicated in the preceding
example by ellipses.

For detailed information on creating EXEC proccedures, see "Part 3.
Learning To Use EXEC."

186 IBM VM/370: CMS User's Guide

Section 10. Using Access Method Services and VSAM Under
CMS and CMS/DOS

This section describes how you can use CMS to create and manipulate VSAM
catalogs, data spaces, and files on 0S and DOS disks using Access Method
Services. The CMS support is based on DOS/VS Access Method Services and
Virtual Storage Access Method (VSAM); this means that if you are an 0S
VSAM wuser and plan to use CMS to manipulate VSAM files you are
restricted to those functions of Access Method Services that are
available under DOS/VS Access Method Services. The control statements
you can use are described in the publication DOS/VS Access Method
Services User's Guide.

You can use CMS to

e Execute the Access Method Services utility programs for VSAM and SAM
data sets on 0S and DOS disks and minidisks. CMS can both read and
write VSAM files using Access Method Services.

e Compile and execute programs that read and write VSAM files from DOS
programs written in the COBOL or PL/I programming languages.

e Compile and execute programs that read and write VSAM files from 0S
programs Wwritten in the VS BASIC, COBOL, or PL/I programming
languages.

e Assemble assembler language source programs under CMS that use VSAM
macros. You must create your own macro library from 0S or DOS macro
libraries.

VSAM files written under CMS are wholly compatible for reading and
writing under 0S and DOS systems. None of the CMS commands normally used
to manipulate CMS files are applicable +to VsAM files, however. This
includes such commands as PRINT, TYPE, EDIT, COPYFILE, and so on.

This section provides information on using the CMS AMSERV command
with which you can execute Access Method Services. The discussion is
divided as follows:

e "Using the AMSERV command" contains general information.

e "Manipulating OS and DOS Disks for Use With AMSERV" describes how to
use CMS commands with 0S and DOS disks.

e "Defining DOS Input and Output Files" is for CMS/DOS users only.
e "Defining OS Input and Output Files" is for 0S users only.

e "Using AMSERV Under CMS" includes notes and examrles showing how to
perform various Access Method Services functions in CHMS.

EXECUTING VSAM PROGRAMS UNDER CMS

The commands that are used to define input and output data sets for
Access Method Services, DLBL and for CMS/DOS users, ASSGN, are also used
to identify VSAM input and output files for program execution.
Information on executing programs under CMS that manipulate VSAM files
is contained in the Program Product documentation for the language
processors. These publications are listed in the VM/370: Introduction.

Section 10. Using Access Method Services and VSAM 187

Restrictions on the use of Access Method Services and VSAM under CHMS
for 0S and DOS users are 1listed in VM/370: CMS Command and Macro
Reference, which also contains complete CMS and CHMS/DOS command formats,

operand descriptions, and responses for each of the conmands described
here.

When you are going to execute VSAM programs in CMS or CHMS/DOS, you
should Temember to issue the DLBL command to identify the master
catalog, as well as any other program input or output file you need to
define.

Using the AMSERV Command

In CMS, you execute Access Method Service utility programs with the
AMSERV command, which has the basic format

amserv filename

wfilename"® is the name of a CMS file that contains the control
statements for Access Method Services.

Note: Throughout the remainder of this section the term WAMSERV" is used
to refer to both the CMS AMSERV command and the 0S/VS or DOS/VS Access
Method Services, except where a distinction is being made between CMS

and Access Method Services.

You create an AMSERV file with the CMS Editor using a filetype of
AMSERV and any filename you want, for example:

edit mastcat amserv
NEW FILE:

EDIT:

input

The Editor recognizes the filetype of AMSERV, and so automatically sets
the margins for your input lines at columns 2 and 72. The sample AMSERV
file being created in the example above, MASTCAT AMSERV, might contain
the following control statements:

DEFINE MASTERCATALOG (NAME (MYCAT) -
VOLUME (123456) CYL(2) -
FILE (IJSYSCT))

Note that the syntax of the control statements must conform to the rules
for Access Method Services, including continuation characters and
parentheses. The only difference is that the AMSERV file does not
contain a "/*" for a termination indicator.

Before you can execute the DEFINE control statement in +this AMSERV
example, you must define the output file, using the ddname IJSYSCT. You
can do this using the DLBL command. Since the exact form required in
the DLBL command varies according to whether you are an O0S or a DOS
user, separate discussions of the DLBL command are provided 1later in
this section. All of the following examples assume that any disk data
set or file that you are referencing with an AMSERV command will have
been defined by a DLBL command.

When you execute the AMSERV command, the AMSERV control statement
file can be on any accessed CMS disk; you do not need to specify the
filemode, and if you are a DOS user, you do not need to assign SYSIPT.
The task of locating the file and passing it to Access Method Services
is performed by CHMS.

188 IBM VM/370: CMS User's Guide

AMSERV OUTPUT LISTINGS

When the AMSERV command is finished processing, you receive the CHS
Ready message, and if there was an error, the return code (from register
15) is displayed following the "R". For example,

R(00008);
or, if you are receiving the long form of the Ready message, it appears:
R(00008); T=0.01/0.11 10:50:23

If you receive a Ready message with an error return code, you should
examine the output listing from AMSERV to determine the cause cf the
error.

AMSERV output 1listings are written in CMS files with a filetype of
LISTING; by default, the filename is the same as that of the input
AMSERV file. For example, if you have executed

amserv mastcat

and the CMS Ready message indicates an error return code, you should
examine the file MASTCAT LISTING:

edit mastcat listing
EDIT:
locate /idc/#=

Issuing the LOCATE subcommand twice to find the character string IDC
will position you in the LISTING file at the first Access Method
Services message.

The publication DOS/VS Messages, Order ©No. GC33-5379, 1lists and

explains all of the messages generated by Access Method Services
together with the associated reason codes.

Instead of editing the file, you could alsoc use the TYPE command to
display the contents of the entire file, so that you would be able to
examine the input control statements as well as any error messages:

type mastcat listing
If you need to make changes to control statements before executing
the AMSERV command again, use the CMS Editor to modify the AMSERV input
file.
If you execute the same AMSERV file a number of times, each execution

results in a new LISTING file, which replaces any previous listing file
with the same filename.

Output from PRINT, LISTCAT, and LISTCRA

When you use AMSERV to print a VSAM file, or to list catalog or recovery
area contents using the PRINT, LISTCAT, or LISTCRA control statements,
the output is written in a listing file on a CMS read/write disk, and
not spooled to the printer unless you use the PRINT option of the AMSERV
command:

amserv listcat (print

Section 10. Using Access Method Services and VSAM 189

If you want to save the output, you should issue the AMSERV command
vithout the PRINT option and then use the CMS PRINT command to print the
LISTING file.

CONTROLLING AMSERV COMMAND LISTINGS

The final disposition of the listing, as a printer or disk file, derends
on how you enter the AMSERV command. If you enter the AMSERV command
with no options, you get a CMS file with a filetype of LISTING and a
filename equal to that of the AMSERV input file. This LISTING file is
usually written on your A-disk, but if your A-disk is full or not
accessed, it is written on any other read/writé CMS disk you have
accessed.

If there is not enough room on your A-disk or any other disk, the
AMSERV command issues an error message saying that it cannot write the
LISTING file. If this happens, the LISTING file created may be
incomplete and you may not be able to tell whether or not Access Method
Services actually completed successfully. In this case, after you have
cleared some space on a read/write disk, you may have to execute an
AMSERV PRINT or LISTCAT function to verify the completion of the prior
job.

LISTING files take up considerable disk space, so you should erase
them as soon as you no longer need then.

AMSERV Command listing Options

If you do not want AMSERV to create a disk file from the listing, you
can execute the AMSERV command with the PRINT option:

amserv myfile (print
The listing is spooled to your virtual printer, and no disk file is
created. You might want to use this option if you are executing a PRINT
or LISTCAT control statement and expect a very large output listing that
you know cannot be contained on any of your disks.

You can also control the filename of the output 1listing file by
specifying a second name on the AMSERV command line:

amserv listcat listcatil
In this example, the input file is LISTCAT AMSERV and the output listing
is placed in a file named LISTCAT! LISTING. A subsequent execution of
this same AMSERV file:

amserv listcat listcat2

creates a second listing file, LISTCAT2 LISTING, so that the listing
created from the first execution is not erased.

190 IBM VM/370: CMS User's Guide

Manipulating OS and DOS Disks for Use with AMSERV

To use CMS VSAM and AMSERV, you can have 0S or DOS disks in your virtual
machine configuration. They can be assigned in your directory entry, or
you can link to them using the CP LINK command. You must have read/write
access to them in order to execute any AMSERV function or VSAM program
that requires opening the file for output or update.

Before you can use an O0S or DOS disk you must access it with the CMS
ACCESS command:

access 200 4

The response from the ACCESS command indicates that the disk is in 0S or
DOS format:

D(200) R/W - OS
D(200) R/W - DOS

You can write on these disks only through AMSERV or through the
execution of a program writing VSAM data sets. Once an 0S disk is used
with AMSERV or VSAM, CMS considers it a DoS disk, so regardless of
whether you are an 0S user, when you access or request information about
a VSAM disk, CMS indicates that it is a DOS disk. You can still use the
disk in an 0S or DOS system; its format is not changed.

USING VM/370 MINIDISKS

If you have a VM/370 minidisk in your virtual machine configuration, you
can use it to contain VSAM files. Before you can use it, it must be
formatted with the IBCDASDI program or other appropriate operating
system utility program. When you request that a disk be added to your
virtual machine configuration for use with VSAM files under CMS, you
should indicate that it be formatted for use with 0S or DOS. Or, you
can format it yourself using the IBCDASDI program. A brief example of
how to do this is given under "Using Temporary Disks," below. The
IBCDASDI control statements are fully described in the VM/370:
Operator's Guide.

Note: If you are an 0S user, you should be careful about allocating
space for VSAM on nminidisks. Once you have used CMS AMSERV to allocate
VSAM data space on a minidisk you should not attempt to allocate
additional space on that minidisk using an 0S/VS system. 0S does not
recognize minidisks, and would attempt to format the entire disk pack
and thus erase any data on it. To allocate additional space for VSAM,
you should use CMS again. If you use the IBCDASDI program to format the
disk, and use the CYLNO parameter, the entire disk is flagged as full,
so that 0S cannot allocate additional space.

USING THE LISTDS COMMAND

For 0S or DOS disks or minidisks, you can use the LISTDS command to
determine the extents of free space available for use by VSAM. You can

Section 10. Using Access Method Services and VSAM 191

also determine what space is already in use. You can use this
information to supply the extent information when you define VSAM
files.

The options used with VSAM disks are

e EXTENT, to find out what extents are in use, and
e FREE, to find out what extents are availatle.

For example, if you have an 0S disk accessed as a G-disk, and you enter:
listds g (extent
The response might look like:

EXTENT INFORMATION FOR 'VTOC' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD (RELTRK) TRACKS
000 vToC 099 00 1881 099 18 1899 19

EXTENT INFORMATION FOR 'PRIVAT.CORE.IMAGE.LIB' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD (RELTRK) TRACKS
000 pATA 000 O1 1 049 18 949 9u9

EXTENT INFORMATION FOR 'SYSTEM.WORK.FILE.NO.6' ON 'G' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD(RELTRK) TRACKS
000 DATA 050 00 950 051 18 987 38

You could also determine the extent for a particular data set:

listds ? * (extent
DMSLDS220R ENTER DATA SET NAME:
system recorder file

EXTENT INFORMATION FOR 'SYSTEM RECORDER FILE' ON 'F' DISK:
SEQ TYPE CYL-HD(RELTRK) TO CYL-HD (RELTRK) TRACKS
000 DATA 102 00 1938 102 18 1956 19
002 DATA 010 06 206 010 08 208 3

LISTDS searches all minidisks accessed until it locates the specified
data set. In this example, the data set occupies two separate extents on
disk F. If the data set is a multivolume data set, extents on all
accessed volumes are located and displayed.

If you want to fin& the free extents on a particular disk, enter:
listds g (free

FREESPACE EXTENTS FOR 'G' DISK:
CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS

052 00 988 052 01 989 2
054 02 1028 080 00 1520 493
081 01 1540 098 18 1880 341

You can use this information when you allocate space for VSAM files. If
you enter

listds * (free

CMS lists all the free space available on all of your accessed disks.

192 IBM VM/370: CMS User's Guide

USING TEMPORARY DISKS

When you need extra space on a temporary basis for use with CMS VSAM and
AMSERV, you can use the CP DEFINE command to define a temporary minidisk
and then wuse the IBCDASDI program to format it. Once formatted and
accessed, it is available to your virtual machine for the duration of
your terminal session or until you detach it using the CP DETACH
comnand. Remember that anything placed on a temporary disk is lost, so
that you should copy output that you want to keep onto permanent disks
before you log off.

The example below shows a control statement file and an EXEC procedure
that, together, can be used to format a minidisk with the IBCDASDI
program. For a complete description of the control statements used,
refer to the YM/370: Operator's Guide.

The input control statements for the IBCDASDI programs should be
placed in a CMS file, so that they can be punched to your virtual card
reader. For this example, suppose the statements are in a CMS file named
TEMP IBCDASDI:

DASD198 JOB
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3330,TOADDR=198,VOLID=SCRATCH,CYLNO=10
VLD NEWVOLID=123456
VIOCD STRTADR=185,EXTENT=5
END

Now consider the CMS file named TEMPDISK EXEC:

EERROR SEXIT 100

CP DEFINE T3330 198 10

CP CLOSE C

CP PURGE READER ALL

ACC 190 %/Z IPL *

CP SPOOL PUNCH CONT TO *
PUNCH IPL IBCDASDI Z (NOH)
PUNCH TEMP IBCDASDI * (NOH)
CP SPOOL PUNCH NOCONT

CP CLOSE PUNCH

CP IPL 00C

You execute this procedure by entering the filename of the EXEC:
tempdisk
When the final line of this EXEC is executed, the IBCDASDI program is in
control. You must then signal an Attention interrupt using the Attention
or Enter key, and you receive the message:
IBC105A DEFINE INPUT DEVICE
you should enter

input=2540,00c

to indicate that the control statements should be read from your card
reader, which is a virtual 2540 device at virtual address 0(C.

Section 10. Using Access Method Services and VSAM 193

When the IBCDASDI program is finished, your virtual machine is in the
CP environment and must reload CMS (with the IPL command) to begin
virtual machine execution. You can then access the temporary disk:

acc 198 c
and CMS responds

C(198) R/W - OS

Defining DOS Input and Output Files

Note: This information is for DOS/VS VSAM users. 0S/VS VSAM users should
refer to the section "pefining 0S Input and Output Files."

You must use the DLBL command to define VSAM input and output files for
both the AMSERV command and for program execution. The operands
required on the DLBL command are:

dlbl ddname filemode DSN datasetname (options SYSxxx

where "ddname" corresponds to the FILE parameter in the AMSERV file and
ndatasetname™ corresponds to the entry name or filename of the VSAHM
file.

There are several options you can use when issuing the DLBL command
to define VSAM input and output files. These are: :

e VSAM, which you must use to indicate that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file as a
VSAM file if you are using any of the other options listed here,
since they imply that the file is a VSAM file. In addition, the
ddnames (filenames) IJSYSCT and IJSYSUC also indicate that the file
being defined is a VSAM file.

e EXTENT, which you must use when you are defining a catalog or a VSAM
data space; you are prompted to enter the volume information. This
option effectively provides the function of the EXTENT card in
DCS/VS.

e MULT, which you must use in order to access a multivolume VSAM file;
you are prompted to enter the extent information.

e CAT, which you can use to identify a catalog which contains the entry
for the VSAM file you are defining.

e BUPSP, which you can use to specify the size of the buffers VSaM
should use during program execution.

options are entered following the open parenthesis on the DLBL command
line, with the SYSxxXx:

assgn sys003 e
dlbl file1 b1 dsn workfile (extent cat cat2 sys003

Additional examples using some of these options are shown below.

194 IBM VM/370: CMS User's Guide

USING VSAM CATALOGS

While you are developing and testing your VSAM programs in CMS, you may
find it convenient to create and use your own master catalog, which may
be on a CMS minidisk. VSAM catalogs, 1like any other cluster, can be
shared read-only among several users.

You name the VSAM master catalog for your terminal session using the
logical unit SYSCAT in the ASSGN command and the ddname IJSYSCT for the
DLBL command. For example, if your VSAM master catalog is 1located on a
DOs disk you have accessed as a C-disk, you would enter

assgn syscat c
dlbl ijsysct c dsn mastcat (syscat

Note: When you use the ddname IJSYSCT you do not need to specify the
VSAM option on the DLBL command.

You must identify the master catalog at the start of every terminal
session. If you are always using the same master catalog, you might
include the ASSGN and DLBL commands in an EXEC procedure or in your
PROFILE EXEC. You could also include the commands necessary to access
the DOS system residence volume and enter the CMS/DOS environment:

ACCESS 350 z .

SET DOS CN Z (VSAM

ACCESs 555 C

ASSGN SYSCAT C

DLBL IJSYSCT C DSN MASTCAT (SYSCAT PERM

You should use the PERM option so that you do not have to reset the
master catalog assignment after clearing previous DLBL definitions.

You must use the VSAM option on the SET DOS ON command line if you
want to use any Access Method Services function or access VSAM files.

The sample ASSGN and DLBL commands used in the above EXEC are almost
identical with those you issue to define a master catalog using AMSERV.
The only difference is that you must enter the EXTENT optionm so that you
can list the data spaces that this master catalog is to control.

As an example, suppose that you have a 30-cylinder 3330 minidisk
assigned to you to wuse for testing your VSAM programs under CMS.
Assuming that the minidisk is in your directcry at address 333, you
should first access it:

access 333 d
D(333) R/W - OS

If you formatted the minidisk yourself, you know what its label is. If
not, you can find out what the label is by using the CMS command

query search

The response might be

USR191 191 A R/W
DOS333 333 C R/W - 0S
SY¥S190 190 s R/0
SYS19E 19E Y/S R/0

Section 10. Using Access Method Services and VSAM 195

Use the label D0S333 in the VOLUMES parameter in the MASTCAT AMSERV
file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT) -
VOLUME (DOS333) -
CYL (4) -
FILE (IJSYSCT))

Now, to find out what extents on the minidisk you can allocate for VSAM,
use the LISTDS command with the EXTENT option:

listds 4 (free
The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'L' DISK:

CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS
000 01 1 000 09 9 9
000 11 1M 029 18 569 560

From this response, you can see that the volume table of contents (VIOC)
is 1located on the first cylinder, so you can allocate cylinders 1
through 29 for VSAM:

assgn syscat c
dlbl ijsysct ¢ dsn mastcat (syscat perm extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 551
(null line)

After entering the extents, in tracks, giving the relative track number
of the first track to be allocated followed by the number of tracks, you
pust enter a null line to complete the command. A null line is required
because, when you enter multiple extents, entries may be placed on more
than one line. If you do not enter a null line, the next line you enter
causes an error, and you must re-enter all of the extent information.

Note that, as in DOS/VS, the extents must be on cylinder boundaries, and
you cannot allocate cylinder 0.

Now you can issue the AMSERV command:
amserv mastcat
A Ready message with no return code indicates that the master catalog is

defined. You do not need to reissue the ASSGN and DLBL commands in order
to use the master catalog for additional AMSERV functions.

a3 %3+ 3 2 —_—m e e e

You can use the AMSERV command to define private catalogs and spaces for
them, also. The -procedures for determining what space you can allocate
are the same as those outlined in the example of defining a master
catalog.

For a user catalog, you may use any programmer logical unit, and any
ddname:

196 IBM VM/370: CMS User's Guide

access 199 e
listds e (free

assgn sys001 e
d1bl catl e dsn private cat1 (sys001 extent perm

amserv usercat
The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (IJSYSUC) -
CYL (4) -
VOLUME (DOSVS2) -
CATALOG (MASTCAT))

After this AMSERV command has completed successfully you can use the
catalog PRIVATE.CAT1. When you issue a DLBL command to identify a
cluster or data set cataloged in this catalog, you must identify the
catalog using the CAT option on the DLBL command for the file:

assgn sys100 c
dlbl file2 e dsn ? (sys100 cat cati

Or, you can define this catalog as a job catalog.

Using a Job Catalog

If you want to set up a user catalog as a job catalog so that it will be
searched during all subsequent jobs, you can define the catalog using
the special ddname IJSYSUC. For example:

assgn sys101 c
d1bl ijsysuc c dsn private catl (sys101 pernm

If you defined a user catalog (IJSYSUC) for a terminal session and
you use the AMSERV command to access a VSAM file, the user catalog takes
precedence over the master catalog. This means that for files that
already exist, only the user catalog is searched. When you define a
cluster, it is cataloged in the user catalog, rather than in the master
catalog, unless you use the CAT option to override it.

If you want to use additional catalogs during a terminal session, you
first define them just as you would any other VSAM file:
assgn sys010 £ ’
dlbl mycat2 f dsn private cat2 (sys010 vsam

Then, when you enter the DLBL command for the VSAM file that is
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of
the catalogqg:

assgn sys011 £
dlbl input f dsn input file (sys011 cat mycat2

Section 10. Using Access Method Services and VSAM 197

If you want to stop using a job catalog defined as IJSYSUC, you can
clear it using the CLEAR option of the DLBL command:

dlbl ijsysuc clear

Then, the master catalog becomes the job catalog for files not defined
with the CAT option.

Catalog Passwords

When you define passwords for VSAM catalogs in CMS, or when you use CHMS
to access VSAM catalogs that have passwords associated with them, you
must supply the password from your terminal when the AMSERV command
executes. The message that you receive to prompt you for the password
is the same message you receive when you execute Access Method Services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JCB AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

DEFINING AND ALLOCATING SPACE FOR VSAM FILES

You can use CMS AMSERV to allocate additional data spaces for VSAM. To
use the DEFINE SPACE control statement, you must have defined the
catalog which that is to control the space, and you must have the volume
or volumes on which the space is to be allocated mounted and accessed.

For example, suppose you have a DOS-formatted 3330 disk attached to
your virtual machine at virtual address 255. After accessing the disk
and determining the free space on it, you could create a file named
SPACE AMSERV:

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2))

To execute this AMSERV file, define PRIVATE.CATZ2 as a user catalog using
the ddname CAT2, and then define the ddname for the FILE parameter:

access 255 ¢

assgn sys010 c

dlbl cat2 c dsn private cat2 (sys010 vsam
assgn sys011 c

dlbl file1 ¢ (extent sys011 cat cat2

Note that you do not need to enter a data set name to define the space.
When CMS prompts you for the extents of the space you can enter the
extent specifications:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
190 1900

198 IBM VM/370: CMS User's Guide

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER, TRACKS,
or RECORDS) in the AMSERV file agrees with the information you provide
in the DLBL command. All data extents must tegin and end on cylinder
boundaries. Any additional space you provide in the extent information
that is beyond what you specified in the AMSERV file is claimed by
VSAM. :

Specifying Multiple Extents

When you are specifying extents for a master catalog, data space, or
unique file, you can specify up to 16 extents on a volume for a
particular space. When prompted by CMS to enter the extents, you must
separate different extents by commas, or place them on different lines.
To specify a range of extents in the above example, you can enter

dlbl filel1 c (extent sys011
190 190, 570 190, 1900 1520
(null line) ’

-= Or =--

dlbl filel ¢ (extent sys011

190 190
570 190
1900 1520

(null 1line)
Again, the first number entered for each extent represents the relative

track for the beginning of the extent and the second number indicates
the number of tracks.

Specifying Multivolume Extents

You can define spaces that span up to 9 volumes for VSAM files: all of
the volumes must be accessed and assigned when you issue the DLBL
command to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do
not use the PRINT option, you must have a read/write CMS disk so that
AMSERV can write the output LISTING file.

If you are defining a new multivolume data space or unique cluster,
you must specify the extents on each volume that the data is to occupy
(starting track and number of tracks), followed by the disk mode letter
at which the disk is accessed and the programmer logical wunit to which
the disk is assigned:

access 135 b
access 136 c
access 137 d
assgn sys001 b
assgn sys002 c
assgn sys003 4
dlbl newfile b (extent sys001
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60 b sys001, 400 80 b sys001, 60 40 4 sys003
2000 100 c sys002
(null 1line)

Section 10. Using Access Method Services and VSAM 199

If you specify more than one extent on the same line, the extents must
be separated by commas; if you enter a comma at the end of a line, it is
ignored. pifferent extents for the same volume must be entered
consecutively.

Note that in the preceding example, the extent information 1is for
2314 disks; and that these extents are also on cylinder boundaries.

When you enter multivolume extents you can use a default mode. For
example:

dlbl newfile b (extent sys001
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60, 400 80, 60 40 d sys003,
2000 100 c sys002

(null line)

Any extents you enter without specifying a mode letter and SYSxxx value
default to the mode and SYSxxx on the DLBL command 1line, in this case,
the B-disk, SYSO001.

If you make any errors issuing the DLBL command or extent
information, you must re-enter the entire command sequence.

IDENTIFYING EXISTING MULTIVOLUME FILES: When you issue a DLEL command to

identify an existing multivolume VSAM file, you must use the MULT option
of the DLBL command:

dlbl old b1 dsn ? (sys002 mult
DMSDLB220R ENTER DATA SET NAME:
dostest.file
DMSDLB330R ENTER VOLUME SPECIFICATIONS:
c sys004, 4 sys003
e sys007

(null 1line)

When you enter the DLBL command you should specify the mode letter and
logical unit for the first volume on the command line. When you enter
the MULT option you are prompted to enter additional specifications for
the remaining extents. In the preceding example, the data set has
extents on disks accessed as B-, C-, D-, and E-disks.

USING TAPE INPUT AND OUTPUT

If you are using AMSERV for a function that requires tape input and/or
output, you must have the tape(s) attached to your virtual machine. The
valid addresses for tapes are 181, 182, 183, and 184, When referring to
tapes, you can also refer to them using their CHMS symbolic names TAP1,
TAP2, TAP3, and TAP4.

since CMS does not read tape labels, there is no CMS/DOS equivalent
to the TLBL control statement. For AMSERV functions that use tape
input/output, you are prompted for the ddname (filenanme) .

When you invoke the AMSERV command, you must use the TAPIN or TAPOUT
option to specify the tape device being used:

amserv export (tapout 181
In this example, the output from the AMSERV control statements in a file

named EXPORT goes to a tape at virtual address 181. CHMS prompts you to
enter the ddname:

200 IBM VM/370: CMS User's Guide

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

After you enter the ddname specified on the FILE parameter in the AMSERV
file and press the carriage return, the AMSERV command executes.

When you create a tape in CMS using AMSERV, CMS writes a tape mark
preceding each output file that it writes. When this same tape is read
using AMSERV under CMS, the tape mark is automatically skipped, so you
do not have to forward space the tape. If you read this tape in a real
DOS/VS system, you should use a TLBL card that specifies a filename, but
no file-id.

Similarly, when you create a tape under a DOS/VS system using Access
Method Services, if the tape is created with standard labels, CMS AMSERV
has no difficulty reading it.

The only time you should worry about positioning a tape created by
AMSERV is wvhen you want to read the tape using a method other than
AMSERV, for example, the MOVEFILE command. Then, you must forward space
the tape using the CMS TAPE command before you can read it.

Defining OS Input and Output Files

Bote: This information is for OS/vs VSAM users only. DOS/VS VSAM users
should refer to "Defining DOS Input and Output Files" for information on
defining files for use with VSAM.

If you are going to use Access Method Services to manipulate VSAM or SAM
files or you are going to execute VSAM programs under CMS, you must use
the DLBL command to define the input and output files. The basic format
of the DLBL command is:

DLBL ddname filemode DSN datasetname (options

vhere ddname corresponds to the FILE parameter in the AMSERV file and
datasetname corresponds to the entry name of the VSAM file, that is, the
name specified in the NAME parameter of an Access Method Services
control statement.

If you are using a CMS file for AMSERV input or output, use the CMS
operand, and enter CMS file identifiers, as follows:

dlbl mine a cms out filel (vsan

The maximum length allowed for ddnames under CMS VSAM is 7
characters. This means that if you have assigned 8-character ddnames (or
filenames) to files in your programs, only the first 7 characters of
each ddname are used. So, if a program refers to the ddname OUTPUTDD,
you should issue the DLBL command for a ddname of OUTPUTD. Since you
can encounter problems with a program that contains ddnames with the
same first seven characters, you should recompile those programs using
7-character ddnames.

There are several options you can use when issuing the DLBL command
to define VSAM input and output files. These are:

Section 10. Using Access Method Services and VSAM 201

e VYSAM, which you must use to indicate that the file is a VSAM file.

Note: You do not have to use the VSAM option to identify a file as a
VSAM file if you are using any of the other options listed here,
since they imply that the file is a VSAM file. 1In addition, the
ddnames (filenames) IJSYSCT and IJSYSUC also indicate that the file
being defined is a VsSAM file.

e EXTENT, which you must use when you are defining a catalog or a VSAM
data space; you are prompted to enter the volume information.

e MULT, which you must use in order to access a multivolume VSAM file;
you are prompted to enter the extent information.

e CAT, which you can use to identify a catalog which contains the entry
for the VSaM file you are defining.

e BUFSP, which you can use to specify the size of the buffers VSAM
should use during program execution.

ALLOCATING EXTENTS ON OS DISKS AND MINIDISKS

When you use Access Method Services to manipulate VSAM files under OS,
you do not have to worry about allocating the real cylinders and tracks
to contain the files. When 7you use CMS AMSERV, however, you are
responsible for indicating which cylinders and tracks should contain
particular VSAM spaces when you use the DEFINE control statement to
define space.

Extents for VSAM data spaces can be defined, in AMSERV files, in
terms of cylinders, tracks, or records. Extent information you sugpply to
CHMS when executing AMSERV nmust always be in terms of tracks. When you
define data spaces or unique clusters, the extent information (number of
cylinders, tracks, or records) in the AMSERYV file must match the extents
you supply when you issue the DLBL command to define the file. When you
supply extent information for the master catalog, any extents you enter
in excess of those required for the catalog are claimed by the catalog
and used as data space.

CMS does not make secondary space allocation for VSAM data spaces.
If you execute an AMSERV file that- specifies a secondary space
allocation, CMS ignores the parameter.

When you use the DLBL command to define VSAM data space, you must use
the EXTENT option, which indicates to CMS that you are going to enter
data extents. For example, if you enter

dlbl space b (extent
CMS prompts you to enter the extents:

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
When you enter the extents, you specify the relative track number of the
first track of the extent, followed by the number of tracks. For
example, if you are allocating an entire 2314 disk, you would enter

20 3980
(null line)

202 IBM VM/370: CMS User's Guide

You can never write on cylinder 0, track 0; and, since VSAM data
spaces nust be allocated on cylinder boundaries, you should never
allocate cylinder 0. Cylinder 0 is often wused for the volume table of
contents (VIOC), as well, so it is always best to begin defining space
with cylinder 1.

The list below shows the DASD devices supported by CMS VSAM, the
number of cylinders on each that can be allocated for VSAM space, and
the number of tracks per cylinder:

Disk Cylinders Iracks/Cylinder
2314/2319 20
3330 Series 404 19
3340 Model 35 348 12
3340 Model 70 696 12

You can determine which disk extents on an 0S disk or minidisk are
available for allocation by using the LISTDS command with the FREE
option, which also indicates the relative track numbers, as well as
actual cylinder and head numbers.

USING VSAM CATALOGS

#While you are developing and testing your VSAM programs in CMS, you may
find it convenient to create and use your own master catalog, which may
be on a CMS minidisk. VSAM catalogs, 1like any other cluster, can be
shared read-only among several users.

You name the VSAM master catalog for your terminal session using the
ddname IJSYSCT for the DLBL command. For example, if your VSAM master
catalog is 1located on an 0S disk you have accessed as a C-disk, you
would enter

dlbl ijsysct ¢ dsn master catalog (perm
You must define the master catalog at the start of every terminal
session. If you are always using the same master catalog, you might
include the DLBL command you need to define it in your PROFILE EXEC:

ACCESS 555 C
DLBL IJSYSCT C DSN MASTCAT (PERM

You should use the PERM option so that you do not have to reset the
master catalog assignment after clearing previous DLBL definitions. The
command

dlbl * clear

clears all file definitions except those entered with the PERM option.

a2 813 RERSEE S

The sample DLBL command used in the preceding example is almost
identical with the one you would issue to define a master catalog using
AMSERV. The only difference is: that you must enter the EXTENT option so
that you can 1list the data spaces that this master catalog is to
control.

Section 10. Using Access Method Services and VSAM 203

As an example, suppose that you have a 30-cylinder 3330 nminidisk
assigned to you to use for testing your VSAM programs under CMS.
Assuming that the minidisk 1is in your directory at address 333, you
should first access it:

access 333 d
D (333) R/W - OS

If you formatted the minidisk yourself, you know what label you assigned
it; if not, you can find out the label assigned to the disk by issuing
the CMS command

gquery search
The response might be

USR191 191 A R/W
VSAMO3 333 C R/¥W - 0S
SYS109 190 S R/0
SYS19E 19E Y/S R,0

Use the volume label VSAMO3 in the MASTCAT AMSERV file:

DEFINE MASTERCATALOG -
(NAME (MASTCAT) -
VOLUME (VSAMO3) -
CYL (4) -

FILE (IJSYSCT))

To find out what extents on this minidisk you can allocate for VSAM, use
the LISTDS command with the FREE option:

listds 4 (free
The response from LISTDS might look like this:

FREESPACE INFORMATION FOR 'D' DISK:
CYL-HD (RELTRK) TO CYL-HD (RELTRK) TRACKS
000 01 1 000 09 9 9
000 11 1 029 18 569 560

From this response, you can see that the VTIOC is located on the first
cylinder, so you can allocate cylinders 1 through 29 for VSAM:

dlbl ijsysct ¢ dsn mastcat (perm extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
19 551

(null line)

After entering the extents, in tracks, giving the relative track number
of the first track to be allocated followed by the number of tracks, you
must enter a null line to complete the command. (A null line is required
because, when you enter multiple extents, entries may be placed on more
than one line.)

Now you can issue the AMSERV command:
amserv mastcat
A Ready message with no return code indicates that the master catalog is

defined. You do not need to reissue the DLBL command in order to
identify the master catalog for additional AMSERV functioms.

204 IBM VM/370: CMS User's Guide

Defining User Catalogs

You can use the AMSERV command to define private catalcgs and spaces for
them. The procedures for determining what space you can allocate are the
same as those outlined in the example of defining a master catalog.

To define a user catalog, you can assign any ddname you want:

access 199 e
listds e (free

dlbl catt e dsn private cat1 (extent

amserv usercat
The file USERCAT AMSERV might contain the following:

DEFINE USERCATALOG -
(NAME (PRIVATE.CAT1) -
FILE (CAT1) -
CYL (4) -
VOLUME (OSVSAM) -
CATALOG (MASTCAT))

After this AMSERV command has completed successfully you can use the
catalog PRIVATE.CAT1. When you define a file cataloged in it, you
identify it using the CAT option on the DLBL command:

dlbl file2 ¢ dsn ? (cat cat!l

Or, you can define it as a job catalog.

Using a Job Catalog

buring a terminal session, you may be referencing the same private
catalog many times. If this is the case, you can identify a job catalog
by using the ddname IJSYSUC. Then, that catalog is searched during all
subsequent jobs, unless you override it using the CAT option when you
use the DLBL command to define a file.

If you defined a user catalog (IJSYSUC) for a terminal session and
you use the AMSERV command to access a VSAM file, the user catalog takes
precedence over the master catalog. This means that for files that
already exist, the job catalog is searched. When you define a cluster,
it is cataloged in the job catalog, rather than in the master catalog,
unless you use the CAT option to override it. CMS never searches more
than one VSAM catalog.

You should use the CAT option to name a catalog when the AMSERV file
you are executing references, with the CATALOG parameter, a catalog that
is not defined either as the master catalog or as a user catalog.

If you want to use additional catalogs during a terminal sessiomn, you
first define them just as you would any other VSAM file:

d1lbl mycat2 f dsn private cat2 (vsam

Section 10. Using Access Method Services and VSAM 205

Then, when you enter the DLBL command for the VSAM file that is
cataloged in PRIVATE.CAT2 use the CAT option to refer to the ddname of
the catalog:

dlbl input £ dsn input file (cat mycat2

If you want to stop using a job catalog defined with the ddname IJSYSUC,
you can clear it using the CLEAR option of the DLBL command:

dlbl ijsysuc clear
or, you can assign the ddname IJSYSUC to some other catalog. If you

clear the ddname for IJSYSUC, then the master catalog becomes the job
catalog.

Catalog Passwords

When you define passwords for VSAM catalogs in CMS, or when you use CMS
to access VSAM catalogs that have passwords associated with them, you
must supply the password £from your terminal when the AMSERV command
executes. The message that you receive to prompt you for the password
is the same message you receive when you execute Access Method Services:

4221A ATTEMPT 1 OF 2. ENTER PASSWORD FOR JOB AMSERV FILE catalog

When you enter the proper password, AMSERV continues execution.

DEFINING AND ALLOCATING SPACE FOR VSAM FILES

You can use CMS AMSERV to allocate additional data spaces for VSAM. To
use the DEFINE SPACE control statement, you must have defined either the
master catalog or a user catalog which will control the space, and you
must have the volume or volumes on which the space is to be allocated
mounted and accessed.

For example, suppose you have an 0S 3330 disk attached to your
virtual machine at virtual address 255. After accessing the disk and
determining the free space on it, you could create a file named SPACE
AMSERV:

DEFINE SPACE -
(FILE (FILE1) -
TRACKS (1900) -
VOLUME (123456) -
CATALOG (PRIVATE.CAT2 CAT2))

To execute this AMSERV file, you must define PRIVATE.CAT2 using the
ddname CAT2, and then define the ddname for the file:

access 255 c
dlbl cat2 c dsn private cat2 (vsanm
dlbl filel c (extent cat cat2

You do not need to enter a data set name to define the space. When CMS

prompts you for the extents of +the space, you can enter the extent
specifications:

206 IBM VM/370: CMS User's Guide

DMSDLB331R ENTER EXTENT SPECIFICATIONS:
190 1900

When you define space for VSAM, you should be sure that the VOLUMES
parameter and the space allocation parameter (whether CYLINDER, TRACKS,
or RECORDS) in the AMSERV file agree with the track information you
provide in the DLBL command.

Specifying Multiple Extents

When you are specifying extents for a master catalog, data space, or
unique file, you can specify up to 16 extents on a volume for a
particular space. When prompted by CMS for the extents, you must
separate the different extents by commas, or place them on different
lines. To specify a range of extents in the above example, you could
enter

dlbl filetl c (extent
190 190, 570 190, 1900 1520
(null 1line)

dlbl file1 ¢ (extent

190 190
570 190
1900 1520

(null line)
Again, the first number entered for each extent represents the relative

track for the beginning of the extent and the second number indicates
the number of tracks.

Specifying Multivolume Extents

You can define spaces that span up to nine volumes for VSAM files; all
of the volumes must be accessed and assigned when you issue the DLBL
command to define or identify the data space.

You should remember, though, that if you are using AMSERV and you do
not use the PRINT option, you must have a read/write CMS disk so that
AMSERV can write the output LISTING file.

If you are defining a new multivolume data space or unique cluster,
you must specify the extents on each volume that the data is to occupy
(starting track and number of tracks), followed by the disk mode letter
at which the disk is assigned:

access 135 b
access 136 ¢
access 137 4
dlbl newfile b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 60 b, 400 80 b, 60 40 4 ,
2000 100 c
(null line)

Section 10. Using Access Method Services and VSAM 207

If you enter more than one extent on the same line, the extents must be
separated by commas; if you enter a comma at the end of a line, it is
ignored. Different extents for the same volume must be entered
consecutively. Note that in this example, the extent information is for
2314 disks and that these extents are also on cylinder boundaries.

When you enter multivolume extents, you do not have to enter a mode
letter for those extents on the disk identified in the DLBL command.
For the extents on disk B in the above example, you could enter

dlbl newfile b (extent
DMSDLB331R ENTER EXTENT SPECIFICATIONS:
100 400 80, 60, 60 40 d
2000 100 c
{null line)

If you make any errors issuing the DLBL command or extent
information, you must re-enter the entire command sequence.

IDENTIFYING EXISTING MULTIVOLUME PILES: When you issue a DLBL command to
identify an existing multivolume VSAM file, you must use the MULT option
of the DLBL command sequence:

dlbl 014 b1 dsn ? (mult

DMSDLB220R ENTER DATASET NAME:
vsamtest.file

DMSDLB330R ENTER VOLUME SPECIFICATIONS:
c, d

(null line)

When you enter the DLBL command you should specify the mode letter for
the first disk volume on the command line. When you enter the MULT
option you are prompted to enter additional specifications for the
remaining extents. In the above example, the data set has extents on
disks accessed as B-, C-, D-, and E-disks.

USING TAPE INPUT AND OUTPUT

If you are using AMSERV for a function that requires tape input and/or
output, you must have the tape(s) attached to your virtual machine. The
valid addresses for tapes are 181, 182, 183, and 184. When referring to
tapes, you can also refer to them using their CMS symbolic names TAP1,
TAP2, TAP3, and TAPA4.

When you use AMSERV to create or read a tape, you supply the ddname
for the tape device interactively, after you issue the AMSERV command.
To indicate to AMSERV that you are using tape for input or output, you
must use the TAPIN or TAPOUT option to specify the tape device being
usied:

amserv export (tapout 181

In this example, the output from an EXPORT function is to a tape at
viirtual address 181. CMS prompts you to enter the ddname:

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:

After you enter the ddname for the tape file, AMSERV begins execution.

208 IBM VM/370: CMS User's Guide

Reading Tapes

When you create a tape file using AMSERV under CMS, CMS writes a tape:
mark preceding each output file. When CMS AMSERV is used to read this
same file, it automatically skips past the tape mark to read the file.
If you want to read the tape on a real 0S/VS system, however, you must
use the LABEL=(2,NL) parameter .on the data definition (DD) card for the
tape.

If you are creating a tape under 0S/VS Access Method Services to be
read by CMS AMSERV, you must be sure to create the tape using standard
labels so that CMS can read it properly. CMS will not be able to read a
tape created with LABEL= (,NL) on the DD card.

For CMs to read this tape for any other purpose (for example, to use
the MOVEFILE command to copy it), you must remember to forward space the
file past the tape mark before beginning to read it.

Using AMSERV Under CMS

This section provides examples of AMSERV functions executed under CMS.
The examples are applicable to both the CMS (0s) and CMS/DOS
environments. You should be familiar with the material presented in
either "Defining DOS Input and Output Files"™ or "Defining 0S Input and
Output PFiles," depending on whether you are a DOS or an OS user,
respectively. For the examples shown below, command lines and options
that are required only for CMS/DOS users are shaded. 0S users should
ignore these shaded entries.

USING THE DEFINE AND DELETE FUNCTIONS

When you use the DEFINE and DELETE control statements of AMSERV, you do
not need to specify the DSN parameter on the DLBL command:

=
c (perm extentgs

élbl ijsysct

If the above commands are executed prior +to an AMSERV command to define
a master catalog, the DEFINE will be successful as 1long as you have
assigned a data set name using the NAME parameter in the AMSERV file.
The same is true when you define clusters, or when you use the DELETE
function to delete a cluster, space, or catalog.

When you do not specify a data set name, AMSERV obtains the name from
the AMSERV file. In the case of defining or deleting space, no data set
name is needed; the FILE parameter corresponding to the ddname is all
that is necessary, and AMSERV assigns a default data set name to the
space.

When you define space on a minidisk wusing AMSERV, CMS does not check
the extents you specify to see whether they are greater than the number
of cylinders available., As long as the starting cylinder is a valid
cylinder number and the extents you specify are on cylinder boundaries,
the DEFINE function completes successfully. However, you receive an
error message When you use an AMSERV function that tries to use this
space.

Section 10. Using Access Method Services and VSAM 209

To define a cluster for VSAM space that has already been allocated, you
need (1) an AMSERV file containing the control statements necessary for
defining the «cluster, and (2) the master catalog (and, perhaps, user
catalog) volume, which will point to the cluster. The volume on which
the cluster is to reside does not have to be online when you define a
suballocated cluster.

For example, the file CLUSTER AMSERV contains the following:

DEFINE CLUSTER (NAME (BOOK.LIST) -
VOLUMES (123456) -
TRACKS (40) -
FILE (BOOK) -
KEYS (14,0) RECORDSIZE (120,132)) -
DATA (NAME (BOOK.LIST.DATA)) -
INDEX (NAME (BOOK.LIST.INDEX))

To execute this file, you would need to enter the following command
sequence (assuming that the master catalog, on volume 123456, is in your
virtual machine at address 310):

access 310 b
; b o
dlbl ijsysct b (perm SySCat
amserv cluster

Note that to define a suballocated cluster, you do not need to provide a
DLBL command to define it to AMSERV.

Defining a Unique Cluster

For a unique cluster (one defined with the UNIQUE attribute), you must
define the space for the cluster at the same time you define its name
and attributes; thus the volume or volumes on which the cluster is to
reside mnust be mounted and accessed when you execute the AMSERV
command. You must supply extent information for the cluster's data and
index portions separately.

To execute an AMSERV file named UNIQUE which contains the following
(the ellipses indicate that the AMSERV file is not complete):

DEFINE CLUSTER -
(NAME (PAYROLL)) -
DATA (FILE (UDATA) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (40) -

INDEX (FILE (UINDEX)) -
UNIQUE -
VOLUMES (567890) -
CYLINDERS (10) -
cee)

210 IBM VM/370: CMS User's Guide

the command sequence should be:

access 350 c

dlbl udata c (extent |

DMSDLB331R EXTENT SPECIFICATIONS:
800 800 cij)
dlbl uindex (extent
600 200 c|
amserv unique

When you use AMSERV to delete a VSAM cluster, the volume containing the
cluster does not have to be accessed unless the volume also contains the
catalog in which the cluster is defined. 1In the case of data spaces and
user catalogs, or the master catalcg, however, the volume(s) must be
mounted and accessed in order to delete the space.

When you delete a cluster or a catalog, you do not need to use the
DLBL command, except to define the master catalog; AMSERV can obtain the
necessary file information from the AMSERV file. 1In the case of data
spaces, you must supply a ddname (filename) with the DLBL command, but
you do not need to use the DSN paranmeter.

You should be particularly careful when you are using temporary disks
with AMSERV, that you have not cataloged a temporary data space or
cluster in a permanent catalog. You will not be akle to delete the srpace
or cluster from the catalog.

USING THE REPRO, IMPCRT, AND EXPCRT (OR EXPORTRA/IMPORTRA) FUNCTIONS

You can manipulate VSAM files in CMS with the REPRO, IMPORT, and EXPORT
functions of AMSERV. You can create VSAM files from sequential tape or
disk files (on 0S, DOS, or CMS disks) using the REPRO function. Using
REPRO, you can also copy VSAM files into CMS disk files or onto tapes.
For the IMPORT/EXPORT process, you have the option (for smaller files)
of exporting VSAM files to CMS disks, as well as to tapes.

You cannot, however, use the EXPORT function to write files onto 0S
or DOS disks. Nor can you use the REPRO function to copy ISAM (indexed
sequential) files into VSAM data sets, since CMS cannot read 1ISAM
files.

You cannot use the ERASE or PURGE options of the EXPORT conmmand if
you are exporting a VSAM file from a read-only disk. The export
operation succeeds, but the listing indicates an error code 184, meaning
that the erase function could not be performed.

You should not use an EXPORT DISCONNECT function from a CMS minidisk
and try to perform an IMPORT CONNECT function for that data set onto an
0S systenmn. 0S incorrectly rebuilds the data set control block (DSCB)
that indicates how much space is available.

The AMSERV file below gives :an example of using the REPRO function to
copy a CMS sequential file into a VSAM file. The CMS input file must be
sorted in alphameric sequence before it «can ke copied into the VSAM
file, which is a keyed sequential data set (KSDS). The VSAM cluster,
NAME.LIST, is defined in an AMSERV file named PAYROLL:

Section 10. Using Access Method Services and VSAM 21

DEFINE CLUSTER (NAME (NAME.LIST) -
VCLUMES (CMSDEV) -
TRACKS (20) -
FILE (BOOK) =~
KEYS (14,0) -
RECORDSIZE (120,132)) -
DATA (NAME (NAME.LIST.DATA)) -
INDEX (NAME (NAME.LIST.INDEX))

To sort the CMS file, create the cluster and copy the CMS file into it,
use the following commands:

sort name list a name sort a
DMSSRT604R ENTER SORT FIELDS:
1 14

135 c

: cl
dlbl ijsysct c (pernm [§
amserv payroll

amserv repro

The file REPRO AMSERV contains:

REPRO INFILE (SOBRT -
ENV (RECORDFORMAT (F) -
BLOCKSIZE (80) -
PDEV (3330))) -
OUTFILE (NAME)

-

When you use the REPRO, IMPORT, or EXPORT functions with tape files,
you must remember to use the TAPIN and TAPOUT options of the AMSERV
conmand. These options perform two functions: they allow you to specify
the device address of the tape, and they notify AMSERV to prompt you to
enter a ddname.

In the example below, a VSAM file is being exported to a tape. The
file, TEXPORT AMSERV, contains:

EXPORT NAME.LIST -
INFILE (NAME) -
OUTFILE (TAPE ENV (PDEV (2400)))

To execute this AMSERV, you enter the commands as follows:

)
dlbl name c (E¥S006 vsam

amserv texport (tapout 181

DMSAMS367R ENTER TAPE OUTPUT DDNAMES:
tape

WRITING EXECS FOR AMSERV AND VSAM

You may £find it convenient to use EXEC procedures for most of your
AMSERV functions, as well as setting up input and output files for
program execution, and executing your VSAM programs. If, for example, a
particular AMSERV function requires several disks and a number of DLBL
statements, you can place all of the required commands in an EXEC file.
For example, if the file below is named SETUP EXEC:

212 IBM VM/370: CMS User's Guide

ACCESS 135 B
ACCESS 136 C
ACCESS 137 D
ACCESS 300 G

DLBL

DLBL

DLBL

DLBL FILE3 D DSN THIRD FILE (VSAM
AMSERV MULTFILE

to invoke this sequence of commands, all you have to enter is the name
of the EXEC:

setup

If you place, at the beginning of the EXEC file, the EXEC control
statement

EERROR SEXIT &SRETCODE

then, you can be sure that the AMSERV command does not execute unless
all of the prior commands completed successfully.

For those AMSERV functions that issue response messages, you can use
the ESTACK EXEC control statement. For example,

§ERROR SEXIT &RETCODE
ACCESS 305 D

DLBL CUTPUT D (VSAM i

&ERROR ECONTINUE

&ESTACK TAPE

AMSERV TIMPORT (TAPIN 181

6IF GRETCODE NE O TYPE TIMPORT LISTING
TAPE REW

SEXIT 0

When the AMSERV command in the EXEC is executed, the request for the
tape ddname is satisfied immediately, by the response stacked with the
§STACK statement.

If you are executing a command that accepts multiple response lines,
you have to stack a null line as follows:

§STACK C i
&STACK
DLBL MULTFILE B (MULT |

Hote: You can use the &BEGSTACK control statement to stack a series of
responses in an EXEC, but you must use §STACK to stack a null line.

Section 10. Using Access Method Services and VSAM 213

Section 11. How VM/370 Can Help You Debug Your Programs

Debugging is a critical part of the program development process. When
you encounter problems executing application programs, or when you want
to test new lines of code, you can use a variety of CF and CMS debugging
commands and techniques to explore your program while it is executing.

You can interrupt the execution of a program to examine and change
your general registers, storage areas, or control words such as the
Program Status Word (PSW), and then continue execution. Also, you can
trace the execution of a program closely, so you can see where branches
are keing taken, and when supervisor calls or I/0 interrupts occur.

In many cases, you may never need to look at a dump of a program to
identify a problen.

Preparing To Debug

Before beginning to debug a program, you should have a current program
listing for reference. When you use VM/370 to debug a program, you can
monitor program execution, instruction by instructicn, so you must have
an accurate list of instruction addresses and addresses of progranm
storage areas. You can obtain a listing of your program by wusing the
PRINT command to print the LISTING file created by the assembler or
compiler. To determine the virtual storage locations of program entry
points, use the LOAD MAP file created by the LCAD and INCLUDE commands.
If you are a CMS/D0S user, use the linkage editor map produced by the
DOSLKED command.

If the program that you are debugging creates printed or punched
output, and you will be executing the program repeatedly, you may not
wish all of the output printed or punched. You should place your
printer or punch in a hold status, so that any files spooled to these
devices are not released until you specifically request it:

cp spool printer hold
cp spool punch hold

When you are finished debugging you can use the CP QUERY command to see
what files are being held and then you can select which files you may
want to purge or release.

When a Program Abends

The most common problem you might encounter is an abnormal termination
resulting from a program interruption. When a program running in a CMS
virtual machine abnormally tetrminates (abends), you receive, at your
terminal, the message

DMSITP141T exception EXCEPTION OCCURRED AT address IN ROUTINE name
and your virtual machine is returned to the CMS environment. From the
message you can determine the type of excepticn (program check,

operation, specification, and so on), and, often, the instruction
address in your program at which the error occurred.

Section 11. How VM/370 Can Help You Debug Your Programs 215

Sometimes this is enough information for you to correct the error in
your source program, reccmpile it and attempt to execute it again.

When this information does not immediately identify the problem in
your program, you can begin debugging procedures using VM/370. To
access your program's storage areas and registers you can enter the
command

debug

immediately after receiving the abend message. This command places your
virtual machine in the debug environment.

To check the contents of general registers 0 through 15, issue the
DEBUG subcommand

gpr 0 15

If you want to look at only one register, enter

gpr 3

You might also wish to check the Program Status Word (PSW). Use the PSW
subcommand:

psw
You can examine storage areas in your program using the X subcommand:

X 201AC 20

In this example, the subcommand requests a display of 20 bytes,
beginning at location 201AC in your program. User programs executed in
CMS are always locaded beginning at location X'20000' unless you specify
a different address on the LOAD or FETCH command. To identify the
virtual address of any instruction in a program, you only need to add
20000 to the hexadecimal instruction address.

RESUMING EXECUTION AFTER A PROGRAM CHECK

On occasion, you will be able to determine the cause of a program check
and continue the execution of your program. There are DEBUG subcommands
you can use to alter your program while it is in storage and resume
execution.

If, for example, the error occurred because you had forgotten to
initialize a register to contain a zero, you could use the DEBUG
subcommand SET to place a zero in the register, and then resume
execution with the GO subcommand. You can use the GO subcommand to
specify the instruction address to which you want execution to begin:

set gpr 11 0000
go 200BO

An alternate method of specifying a starting address for execution to
resume is by using the SET subcommand to change the last word c¢f the
PSW:

set psw 0 000200BO
go

216 IBM VM/370: CMS User's Guide

If your program executes successfully, you can then make the
necessary changes to your source file, recompile, and continue testing.

Using DEBUG Subcommands to Monitor Program Execution

The preceding examples did not represent a wide range of the
possibilities for DEBUG subcommands. Nor do they represent the only way
to approach program debugging. Some additional DEBUG subcommands are
illustrated below. For complete details in using these subcommands,
refer to the VM/370: CMS Command and Macro Reference.

—— et emem e

When you prepare to debug a program with known problems, or when you
are beginning to debug a program for the first time, you might want to
stop program execution at various instructions, and examine the
registers, constants, buffers, and so on. To temporarily stop progranm
execution, use the BREAK subcommand to set breakpoints. You should set
breakpoints after you load the program into storage, but before you
begin executing it. You can set up to 16 breakpoints at one time. For
each breakpoint, you assign a value (id), and an instruction address:

load myprog
debug
break 0 20BCO
break 1 20C10
break 2 20D00
Then, you can return to CMS and begin execution:

return
start

When the first breakpoint in this example is encountered, you receive
the messages

DEBUG ENTERED.
BREAKPOINT 1 AT 20BCO

Then, in the debug environment, use the subcommands GPR, CSW, CAW, PSW,
and X to display registers, control words, or storage locations.

You can resume program execution with the GO subcommand:
go
If, at any time, you decide that you do not want to finish executing
your program, but want to return to the CMS environment immediately, you
must use the HX subcommand

hx

There are three subcommands you can use to exit from the debug
environment:

1. RETURN, to return to the CMS environment when DEBUG is entered with
the DEBUG command.

2. GO, to resume program execution when it has been interrupted by a
breakpoint.

3. HX, to halt program execution entirely and return to the CMS
environment.

Section 11. How VM/370 Can Help You Debug Your Progranms 217

If you try to leave the debug environment with the wrong subcommand you
receive the message

INCORRECT DEBUG EXIT

and you have to enter the proper subcommand.

USING SYMBOLS WITH DEBUG

0 simplify the process of debugging in the CMS debug environment, you
can use the ORIGIN and DEFINE subcommands. The ORIGIN command allows
you to set an instruction location to serve as the base for all the
addresses you specify. For example, if you specify

origin 20000

then, to refer to your virtual storage location 201BC, you only need to
enter

x 1bc

By setting the DEBUG origin at your program's base address, you can
refer to locations in your program by the virtual storage numbers in the
listing, rather than having to compute the actual virtual storage
address each time. The current DEBUG origin stays in effect until you
set it to a different value or until you reload CMS (with the IPL
command) .

You can use the DEFINE subcommand to assign symbolic names to storage
locations so that you can reference those locations by symbol, rather
than by storage address. For example, suppose that during a DEBUG
session you will repeatedly be examining three particular storage
locations labeled in your program NAME1, NAME2, and NAME3. They are at
locations 20EF0, 20EFA, and 20FOu4. Enter:

load nameprog

debug

origin 20000

define namel EF0 10
define name2 EFA 10
define name3 FO4 10
break 1 aOl

return

start

When the specified breakpoint is encountered, you can examnine these
storage areas by entering:

X namet
X name2
X name3

You can also refer to these symbols by name when you use the STORE
subcommand:

store name2 clc5c3cS5clelde5d6c9d49

The names you specify do not have to be the same as the 1labels in the
program; you can define any name up to 8 characters.

Figure 17 summarizes the DEBUG subcommands.

218 IBM VM/370: CMS User's Guide

Subcommand Format

| Function

BReak id symbol} |IStops program execution at the
hexloc | specified breakpoint.
CAW |Displays the contents of the
|Channel Address Word.
CSW |Displays the contents of the

|Channel Status Word.

r hl
DEFine symbol hexlcc |bytecount|
| 4 |

L 4

|Assigns a symbolic name to the
|virtual storage address.

|

|

|Dumps the contents of specified

h_——-.——_——-—_———.———_—_———-—————.————_——-———_-—_————-——__——_.—.———-———._—_-——A

r

|

|

|

|

|

|

|

|

|

(

|

|

|

|

|

|

| r r 1 1

| DUmp |symboll |symbol2| [ident] | |virtual storage locations to the
| lhexloc1 (hexloc2| | |virtual spooled printer.

| | 9 | * | ('

[L t 32 4 4

|

| r 1 | Returns control to your program
| GO |symbol}] land starts execution at the

[lhexloc| |specified location.

| L 4 |

|

| GPR regl [reg2] IDisplays the contents of the

l {specified general registers.

|

| HX {Halts execution and returns to
| |the CMS command environment.

|

| r 1 |Specifies the base address to be
| ORigin |symbolj added to locations specified in
{ | hexloc| lother DEBUG subcommands.

| | [V |

| L 4 |

|

| PSW {Displays the contents of the old
| |[Program Status Word.

1

| RETurn |Exits from debug environment to
| |the CMS command environment.

|

| SET (CAW hexinfo |Changes the contents of specified
l CSW hexinfo [hexinfo] |control words or registers.

| PSW hexinfo [hexinfo] |

} GPR reg hexinfo [hexinfo] |

I

| STore (symbol)} hexinfo [hexinfo] |[Stores up to 12 bytes of informa—-
1 {hexloc} jtion starting at the specified
| fvirtual storage location.

|

| r 1 | Examines virtual storage

| X |{symbol | n | |locations.

| Ilength| |

i 4 l

| r 1 |

| hexloc | n | |

l (A |

| L J |

[N

Figure 17. Summary of DEBUG Subcommands

Section 11.

How VM/370 Can Help You Debug Your Programs

219

What To Do When Your Program Loops

If, when your program is executing, it seems to ke in a loop, you should
first verify that it is looping, and then interrupt its execution and
either (1) halt it entirely and return to the CMS environment or (2)
resume its execution at an address outside of the loop.

The first indication of a program loop may ke either what seems to be
an unreasonably long processing time, or, if you have a blip character
defined, an inordinately large number of blips.

You can verify a loop by checking the PSW frequently. If the last
word repeatedly contains the same address, it is a fairly good
indication that your program is in a loop. You can check the PSW by
using the Attention key to enter the CP environment. You are notified
by the message

cp

that your virtual machine is in the CP environment. You can then use
the CP command DISPLAY to examine the PSW

cp display psw
and then enter the command BEGIN to resume program execution:
cp begin

If you are checking for a loop, you might enter both commands on the
same line using the logical line end:

cp d p#b

When you have determined that your program is in a loop, 7you can halt
execution using the CMS Immediate command BX. To enter this command,
you must press the Attention key once to interrupt program execution,
then enter

hx

If you want your program to continue executing at an address past the
loop, you can use the CP command BEGIN to specify the address at which
you want to continue execution:

cp begin 20cdo

0r, you could use the CP command STORE to change the instruction address
in the PSW before entering the BEGIN command:

cp store psw 0 20cdO#begin

Tracing Program Activity

When your program is in a loop, or when you have a program that takes an
anexpected branch, you might need to trace the execution closely to
determine at what instruction the program goes astray. There are two
commands you can use to do this. The SVCTRACE command is a CMS command
which traces all SVCs (supervisor calls) in your program. The TRACE
command is a CP command which allows you to trace different kinds of
information, including supervisor call instructions.

220 IBM VM/370: CMS User's Guide

USING THE CF TRACE COMMAND

You can trace the following kinds of activity in a program using the CP
TRACE command:

Instructions

Branches

Interrupts (including program, external, I/0 and SVC interrupts)
I/0 and channel activity

When the TRACE command executes, it traces all your virtual machine's
activity; when your program issues a supervisor call, or calls any CMS
routine, the TRACE continues.

You can make most efficient use of the TRACE command by starting the
trace at a specific instruction location. You should set an address
stop for the location. For example, if you are going to execute a
program and you want to trace all of the branches made, you would enter
the following sequence of commands to begin executing the program and
start the trace:

load progress
cp adstop 20004
start

ADSTOP AT 20004
cp trace branch
cp begin

Now, whenever your program executes a branch instruction, Yyou receive
information at the terminal that might look like this:

02001E BALR O05E6 ==> 020092
This line indicates that the instruction at address 2001E resulted in a
branch to the address 020092. When this information is displayed, your
virtual machine is placed in the CP environment, and you must use the
BEGIN command to continue execution:
cp begin

When you locate the branch that caused the proklem in your program, you
should terminate tracing activity by entering

cp trace end
and then you can use CP commands to continue debugging or you can use
the EXTERNAL command to cause an external interrupt that places your
virtual machine in the debug environment:

cp external

You receive the message

DEBUG ENTERED.
EXTERNAL INTERRUPT

And you can use the DEBUG subcommands to investigate the status of your
progranm.

Section 11. How VM/370 Can Help You Debug Your Programs 221

There are several things you can do to control the amount of information
you receive when you are using the TRACE command, and how it is
received. For example, if you do not want program execution to halt
@very time a trace output message is issued, you can use the RUN option:

cp trace svc run
Then, you can halt execution by pressing the Attention key when the
interrupt you are waiting for occurs. You should use this option if you
do not want to halt execution at all, but merely want to watch what is
happening in your program.

Similarly, if you do not require your trace output immediately, you
can specify that it be directed to the printer, so that your terminal
does not receive any information at all:

cp trace inst printer
When you direct trace output to a printer, the trace output is mixed in
vith any printed program output. If you want trace output separated
from other printed output, use the CP DEFINE command to define a second

printer at a virtual address lower than that of your printer at 00E. Por
example:

cp define printer 006

Then, trace output will be in a separate spool file. CMS printed ocutput
always goes to the printer at address 0OE.

When you finish tracing, use the CP CLOSE command to close the
virtual printer file:

cp close e
cp close 006

If you want trace output at the printer and at the terminal, you can use
the BOTH option:

cp trace all both

Suspending Tracing

If you are debugging a program that does a lot of I/0, or that issues
many SVCs, and you are tracing instructions or branches, you might not
wish to have tracing in effect when the supervisor or I/0 routine has
control. When you notice that addresses being traced are not in your
program, you can enter

cp trace end

and then set an address stop at the location in your program that
receives control when the supervisor or I/0 routine has completed:

cp adstop 20688
begin

222 IBM VM/370: CMS User's Guide

Then, when this address is encountered, you can re-enter the CP TRACE
command.

USING THE SVCTRACE COMMAND

If your program issues many SVCs, you may not get all of the information
you need wusing the CP TRACE command. The SVCTRACE command is a CMS
command, which provides more detailed information about all SVCs in your
program, including register contents before and after the SVC, the name
of the called routine, and the location from which it was called, and
the contents of the parameter list passed to the SVC.

The SVCTRACE command has only two operands, ON and OFF, to begin and
end tracing. SVCTRACE information can be directed only to the printer,
so you do not receive trace information at the terminal.

Since the SVCTRACE command can only be entered from the CMS
environment, you must use the Immediate commands SO (suspend tracing) or
HO (halt tracing) if you want tracing to stop while a program is
executing. Use the Immediate command RO to resume tracing.

Since the CMS system is %“SVC-driven", this dekugging technique can be
useful, especially, when you are debugging CMS programs. For more
information on writing programs to execute in CMS, see "Section 13.
Programming for the CMS Environment."

Using CP Debugging Commands
In addition to the CMS debugging facilities, there are CP commands that
you can use to debug your programs. These commands are:

e DISPLAY, which you can use to examine virtual storages, registers, or
control words, like the PSH.

e ADSTOP, which you can use to set an instruction address stop in your
program.

e STORE, which you can use to change the contents of a storage
location, register, or control word.

When you use the display command, you can request an EBCDIC translation
of the display by prefacing the location you want display with a "Tw:

cp display t20000.10 v
This command requests a display of X'10! (16) bytes beginning at
location X*20000'. The display is formatted 4 words to a 1line, with
EBCDIC translation at the left, much as you would see it in a dump.

You can also use the DISPLAY command to examine the general
registers. For example, the commands:

cp display g
cp display g1
cp display g2-5

result in displays of all the general registers, of general register 1,
and of a range of registers 2 through 5.

Section 11. How VM/370 Can Help You Debug Your Programs 223

The DISPLAY command also displays the PSW, CAW, and CSW:

cp display psw
cp display caw
cp display csw

With the STORE command, you can change the contents of registers,
storage areas, or the PSWH.

As you can see, the CMS DEBUG subcommands and the CP commands ADSTOP,
DISPLAY, and STORE, have many duplicate functions. The environment you
choose to work in, CP or debug, is a matter of personal preference. The
differences are summarized in Figure 18. What you should be aware of,
however, is that you should never attempt to use a combination of CP
commands and DEBUG subcommands when you are debugging a program. Since
DEBUG itself is a program, when it is running (that is, when you are in
the debug environment), the registers that CP recognizes as your virtual
machine's registers are actually the registers being used by DEBUG.
DEBUG saves your program's registers and PSW and keeps them in a sgpecial
save area. Therefore, if you enter the DEBUG and CP commands to display
ragisters, you will see that the register contents are different:

gpr 0 15
#cp d g

DEBUGGING WITH CP AFTER A PROGRAM CHECK

When a program that is executing under CMS abends because of a progran
check, the DEBUG routine is in control and saves your program's
registers, so that if you want to begin debugging, you must use the
DEBUG command to enter the debug environment.

You can prevent DEBUG from gaining control when a program interrugt
occurs by turning on the wait bit in the program new PSW (location X'68°
in low storage) :

cp store 68 00020000

You should do this before you begin executing your program. Then, a
program check occurs during execution, when CP tries to load the progranm
new PSW, the wait bit forces CP into a disabled wait state and you
receive the message

DMKDSP450W CP ENTERED; DISABLED WAIT PSW

All of your program's registers and storage areas remain exactly as they
were when program interrupt occurred. The PSW that was in effect when
your program was interrupted is in the program old PSW, at location
X'28'., Use the DISPLAY command to examine its contents:

cp display 28.8

The program new PSW, or the PSW you see if you enter the command DISPLAY
PSW contains the address of the LEBUG routine.

If, after using CP to examine your registers and storage areas, you
can recover from the problem, you must use the STORE command to restore
the PSW, specifying +the address of the instruction just before the one
indicated at location X'28'. For example, if the instruction address in
your program is X'566° enter:

224 IBM VM/370: CMS User's Guide

cp store psw 0 20566
cp begin

In this example, setting the first word of the PSW to 0 turns the wait
bit off, so that execution can resunme.

Program Dumps

When a program you execute under CMS abnormally terminates, you do not
automatically receive a program dump. 1If, after attempting to use CHMS
and CP to debug interactively, you still have not discovered the
problem, you may want to obtain a dump. You might also want to obtain a
dump if you find that you are displaying large amounts of information,
which is not practical on a terminal.

Depending on whether you are using CMS DEBUG or CP to do your
debugging, you can use the DUMP command to specify storage locations you
want printed. The formats of the DUMP command (CP) and the DUMP
subcommand (DEBUG) are a little different. See VM/370: CMS Command and
Macro Reference for a discussion of the DEBUG subcommand, DUMP; see
VM/370: CP Command Reference for Geperal Users for a discussion of the

CP DUMP command.

In either event, you can selectively dump portions of your virtual
storage, your entire virtual storage area, or portions of real storage.
For example, to dump the virtual storage space that contains your
program from the debug environment you would enter

cp dump 20000 20810
The second value depends upon the size of your program.
From the CP environment, enter
cp dumnp t20000-20810
The CP DUMP command allcws you to request EBCPIC translation with the

hexadecimal dump. The dump produced by the DEBUG subcommand doces not
provide EBCDIC translation.

Debugging Modules

You can debug nonrelocatable MOLDULE files (created with the GENMOD
comnmand) in the same way you can debug object modules (TEXT files).

To load the MODULE into storage, use the LOADMOD command:

loadnod mymod
cp adstop 201C0
start

If you make any changes to the module while it is in your virtual
storage area and then issue the GENMOD command, the changes are a
permanent part of the executable module:

loadmod mymod

cp store 201C0 0002

genmod mymod
To debug MODULE files in this hanner, you must have a listing of the
program as it existed when the module was Created.

Section 11. How VM/370 Can Help You Debug Your Progranms 225

Comparison Of CP And CMS Facilities For Debugging

If you are debugging problems while running CMS, you can

choose the CP or CMS debugging
cHMs debugging tools.

CHMS

|
|
!

Ccan set up tc 16 address stops
at a time.

The dump is printed in hexa-
decimal format. The storage

each line is identified at the
left. The contents of general
and floating-point registers
are printed at the beginning
of the dump.

The display is typed in hexa-—
The CMS com-—
mands do not display storage
keys, floating—point registers|
or contrcl registers as the CP|
command does.

|

1

|

|

|

|

|

|

address of the first byte of |
1

|

|

|

|

{

|

decimal format. 1
|

The CMS command stores up to
12 bytes of information. CMS
stores data in the gemneral

—— — ————

registers but not in the
floating-point or control reg-—|
isters. CMS stores data in the|

PSW, CAW, and CSW.

CMS traces all SVC interrupts.
cHs displays the contents

of general and floating--point
registers before and after

a routine is called. The para-|
meter list is recorded before |
a routine is called.

1
|
|
|
|
|
|
|
i

|
|
1
{
|
|
|
1
"]

tools. Refer to Figure 18 for a comparison of the CP and
r
| Function | cp
[
]
| Setting | Can set only one address stop at a time.

- Jaddress {
|stops. |
i
|Dumping | The dump is printed in hexadecimal format
|contents | with EBCDIC translation. The storage ad-
lof storage| dress of the first byte of each line is
{to the | identified at the left.
jprinter. |
| l
| |
| |
| ‘
{Displaying| The display is typed in hexadecimal format
{the con- | with EBCDIC translation. The CP command
{tents of | displays storage keys, floating—point regi-
| storage | sters and control registers.
{and |
{control |
| registers |
jat the |
| terminal. |
|
| Storing | The amount of information stored ty the CP
|informa—~ | command is limited only by the length of
{tion. { the input line. The information can ke
i | fullword aligned when stored. CP stores
1 | data in floating-point and control regis-—
| { ters, as well as in general registers. cp
| | stores data in the PSW, but not in the CAW
i | or CSW. However, data can be stored in the
l | CSW or CAW by specifying the hardware ad-
i | dress in the STORE command.
|
| Tracing | CP traces:
|informa- | e 211 interrupts, instructions, and
{tion. | branches
| | e SVC interrupts
| | e I1/0 interrupts
| | e Program interrupts
| | e External interrupts
! | e Privileged instructions
| | e 211 user I/0O operations
i { e Virtual and real CCH's
1 1 e All instructions
1 |
\ | The CP trace is interactive. You can stop
| | it and display other fields.
L
Figure 18. Comparison of CP and CHMS Facilities for Debugging
226 IBM VM/370: CMS User's Guide

What Your Virtual Machine Storage Looks Like

Figure 19 illustrates a simplified CMS storage map. The porticn of
storage that is of most concern to you is the user program area, since
that is where your programs are loaded and executed. The wuser progran
area and some of the other areas of storage shown in the figure are
discussed below in general terms.

When you issue a LOAD command (for 0S or CMS programs) or a FETICH
command (for DOS programs), and you do not specify the ORIGIN option,
the first, or only, program you load is loaded at location X'20000', the
beginning of the user program area.

The wupper limit, or maximum size, of the user program area is
determined by the storage size of your virtual machine. You can find
out how large your virtual machine is by using the CP QUERY command:

cp query virtual storage

If you need to increase the size of your virtual machine, then you
must use the CP command DEFINE. For example

cp define storage 1024k

increases the size of your virtual machine to 1024K bytes. If you are
in the CMS environment when you enter this command, you receive a
message like:

STORAGE = 01024K
DMKDSP450W CP ENTERED; DISABLED WAIT PSW '00020000 00000000°

and you must reload CMS with the IPL command kefore you can continue.

You might need to redefine your virtual machine to a larger size if
you execute a program that issués many requests for free storage, with
the 0S GETMAIN or DOS/VS GETVIS macros. CMS allocates this storage from
the user program area.

At the top of the user program area are the loader tables, that are
used by the CMS loader to point to programs that have have been locaded.
You can increase the size of this area with the CMS SET LDRTBLS command.
If you use the SET LDRTBLS command, you should issue it immediately
after you IPL CHMS.

The transient program area is used for 1loading and executing
disk-resident CMS MODULE files that have been created using the ORIGIN
TRANS option of the LOAL command, followed by the GENMOD command. For
more information on CMS MODULE files and the transient area, see
"Executing Program Modules" in "Section 13. Programming for the CMS
Environment." :

SHARED AND NONSHARED SYSTEMS

The areas in storage labelled in Figure 19 as the CMS nucleus and the
DCSS are system programs that are loaded by various types of requests.
When you enter the command

cp ipl cms

Section 11. How VM/370 Can Help You Debug Your Programs 227

| e e a3

(|

| |

| |

| DCSS |

| |

{ |

| |

L J

f 1 X'n

| Loader Tables | (where n = your
| | virtual machine
| | storage size)
| |

| |

| |

| User Program Area |

| I

| |

| |

| | Xv20000°"
| |

| CMS Nucleus |

| |

| | X'10000°"
| |

| Transient Program Area |

| |

| | X'EQOQQ!
| Free storage used by |

| CMS routines |

| | X'3000°*
| System Control Blocks, |

| Pointers, Flags |

[[] xIOI

Figure 19. Simplified cMs Storage Map

the area shown as the CMS nucleus is loaded with the CMS system, which
is known to CP by its saved name, CMS. This saved system is a copy of
the CMS system that is available for many users to share. When you are
using CMS, you share it with other users who have also issued the IPL
command to load the saved CMS system. By having many users share the
same system, CP can manage system resources more efficiently.

Under some circumstances, you may need to load the CMS system into
your virtual machine by entering the IPL command as follows:

cp ipl 190

This IPL command lcads the CMS system by referring to its virtual
address, which in most installations is 190. The copy of CMS you load
this way is nonshared; it is your own copy, but it is the same systen,
functionally, as the saved system CMS.

some of the CP and CMS debugging commands do not allow you to trace
or store information that is contained in shared areas of your virtual
machine. For example, if you have entered the command

cp trace inst

228 IBM VM/370: CMS User's Guide

to trace instructions in your virtual machine, some of the instructions
may be located in the CHMS nucleus. If you have a shared copy of CMS, you
receive a message like

DMKVMA181E SHARED SYSTEM XCHMS REPLACED WITH NONSHARED COPY

~and CP 1loads a copy of CMS for you that you do not share with other
users.

Discontiguous Shared Segments (BCSS)

Some CMS routines and Programs are stored on disks, and 1loaded into
storage as needed. These segments include the CMs Editor, EXEC
pProcessor, and 0S simulation routines; CMS5/DOS; VSAM: and Access Method
Services. Beyond the end of your virtual machine address space is an
area of storage into which these segments are loaded when you need
them. Since this area is not ccntiguous with your virtual storage, the
Segments that are loaded in this area are called discontiguous shared
segments.

These segments are 1loaded only when you need them, and are released
from the end of your virtual machine when you are through using them.
Like the CMS system, they are saved Systems, and can be shared by many
users. For example, whenever you issue the EDIT command the segment
named CMSSEG .is loaded; when you enter the EDIT subcommands FILE or
QUIT, the saved system CMSSEG is released. The other segments are named
CMSDOS (for CMS/D0S), CMSVSAM (for vVsaM interfaces), and CMSAMS (for
Access Method Services Interfaces).

If during the course of debugging, you need a nonshared copy of one
of these Segments, you can use the SET command with the NONSHARE
operand, for example

set nonshare cmsseg
If you do not specifically request a nonshared copy before you issue a
command that alters a shared segment, CP replaces the shared copy with a
nonshared copy for you and issues the DMKVMA 181E Ressage.

For additional information on saved systenms, discontiguous shared
segments, and CMS virtual storage, see the VN/370: System Programmer's

Section 11. How VM/370 Can Help You Debug Your Programs 229

Section 12. Using the CMS Batch Facility

The CMS Batch Facility provides a way of submitting Jjobs for batch
processing in CMS. You can use the CMS Batch Facility when:

e You have a Jjob (like an assembly or execution) that takes a lot of
time, and you want to be able to use your terminal for other work
while the time-consuming job is being run.

e You do not have access to a terminal.

The CMS Batch Facility is really a virtual machine, generated and
controlled by the system operator, who 1logs on VM/370 using the batch
userid and invoking the CMSBATCH command. All jobs submitted for batch
processing are spooled to the userid of this wvirtual machine, which
executes the jobs sequentially.: To use the CMS Batch Facility at your
location, you must ask the system operator the userid of the batch
virtual machine.

Submitting Jobs to the CMS Batch Facility

Under a real O0S or DOS system, Jjobs submitted in batch mode are
controlled by JCL specifications. Batch jobs sulmitted to the CMS Batch
Facility are controlled by the control cards /JOB, /SET, and /*, and by
CMS commands.

Any application or development program written in a language
supported by VM/370 may be executed on the Latch facility virtual
machine., However, there are restrictions on programs using certain CP
and CMS commands, as described later in this section.

INPUT TO THE BATCH MACHINE

Input records must be in card-image format, and may be punched on real
cards, placed in a CMS file with fixed-length, 80-character records, or
punched to your virtual card punch. These joks are sent to the batch
virtual machine in one of two ways:

e By reading the real punched card input into the system card reader.

e By spooling your virtual card punch to the virtual reader of the
batch virtual machine.

When you submit a real card deck to the batch machine, the first card
in the deck must be a CP ID card. The ID card takes the form:

)
|1ID userid |
L

where ID must begin in card column one and be separated from userid (the
batch facility virtual machine userid) by one or more blanks.

Section 12. Using the CMS Batch Facility 231

For example, if your .installation's batch virtual machine has a
userid of BATCH1, you punch the card:

ID BATCH1
and place it in front of your deck.
When you are going to submit a job using your virtual card punch, you
nust first be sure that your punch is spooled to the virtual reader of

the batch virtual machine:

cp spool punch to batch1l

submitting Virtual Card Input to the CMS Batch Facility

Virtual card input can be spooled to the batch machine in several ways.
You may create a CMS file that contains the input control cards and use
the CMS PUNCH command to punch the virtual cards:

punch batch jcl (noheader

When you punch a file this way, you must use the NOHEADER option of the
PUNCH command, since the CMS Batch Facility cannot interpret the header
card that is usually produced Ly the PUNCH command. As it does with
cards in an invalid format, the batch virtual machine would flush the
header card.

You can use an EXEC procedure to submit input to the batch machine.
From an EXEC, you can punch one line at a time into your virtual punch,
using the G&PUNCH and &BEGPUNCH EXEC control statements. When you do
this, you must remember to use the CP CLOSE command to release the stool
punch file when you are finished:

CP CLOSE PUNCH

If you are using the EXEC to punch individual lines and entire CHs files
to be read by the batch virtual machine as one continuous job streanm,
you must remember to spool your punch accordingly:

CP SPOOCL PUNCH CONT

&PUNCH ,JOB BOSWELL 999888
PUNCH BATCH JCL * (NOHEADER
CP SPOOL PUNCH NOCONT

CP CLOSE PUKNCH

The ¢JOB and /* Cards

A /JOB card must precede each job to be executed under the batch
facility. It identifies your userid to the tatch virtual machine and
provides accounting information for the system. It takes the form:

¥
| /JOB userid accntnun [jobname] [comments]
L .)

232 IBM VM/370: CMS User's Guide

userid is your user identification, or the userid under which you
want the job submitted. This parameter controls: (1) The
userid charged by the CP accounting routines for the system
resources used during a job. (2) The name and distribution
code that appear on any spooled printer or punch output. (3)
The userid to whom status messages are sent while the batch
machine is executing the job.

accntnum is your account number. This account number appears in the
accounting data generated at the end of your Ijob. It
overrides the account number in the CP directory entry for the
userid specified for this job.

jobname is an optional parameter that specifies the name of the job
being run. If you specify a jobname, it appears as the in the
CP spool file identification in the filetype field. The
filename field always contains CMSBATCH. See "Batch Pacility
Ooutput" below.

comments may be any additional information you want to provide.

The /* card indicates the end of a job to the batch facility. It
takes the form:

| /* |

L J

The batch facility treats all /¥ cards after the first as null
cards. Therefore, if you want to ensure against the previous jcb not
having a /* end-of-job indicator, you should precede your /JOB card with
a /* card.

The /% card is also treated as an end-—of-file indicator when a file
is being read from the input stream. This is a special technique used in
submitting source or data files through the card reader, and is
discussed under "A Batch EXEC for Non-CMS Users."

The /SET Card

The /SET card sets limits on a system's time, printing, and punching
resources during the execution of a job. It takes the form:

1)
| /SET [TIME seconds] [PRIRT lines] [PUNCH cards)
L)

seconds is a decimal value that specifies the maximum number of
seconds of virtual CPU time a job can use.

lines is a decimal value that specifies the maximum number of lines
a job can print.

cards is a decimal number that specifies the maximum number of cards
a job can punch.

Section 12. Using the CMS Batch Facility 233

The default values for the batch facility are set at 32,767 seconds,
printed lines, and punched cards per Jjob. Any new limits defined using
the /SET card must be less than these maximum settings. The systen
resources can be set at lesser values than the default values by an
installation's system programmer; be sure you know the maximum
installation values for batch resource limits before you use the /SET
card.

HOW THE BATCH FACILITY WORKS

The CMS Batch Facility, once initialized, runs continuously. When it
begins executing a job, it sends a message to the userid of the user
submitting the Jjob. So, if you are 1logged on when the batch machine
begins executing a job you sent it, you receive the message:

MSG FROM BATCHID: JOB 'yourjob' STARTED
When the batch machine finishes processing a job, it sends the message:
MSG FRCM BATCHID: JOB 'yourjob' ENDED

where yourjob is the jobname you specified on the /JOB card. Before it
reads the next job from its card reader, the katch virtual machine:

» Closes all spooling devices and releases spool files.

o Resets any spooling devices identified by the CP TAG command.
» Detaches any disk devices that were accessed.

» Punches accounting information to the systen.

» Reloads CHMS.

All of this “housekeeping" is done by the CMS Batch Facility so that
each job that is executed is unaffected by any previous jobs.

If a job that you send to the batch virtual machine terminates
abnormally (abends), the batch machine sends you a message:

MSG FROM BATCHID: JOB ‘'yourjob' ABEND

and spools a CP storage dump of your virtual machine to the printer.
The remainder of your job is flushed.

Whenever the batch virtual machine has read and executed all of the
jobs in its card reader, it waits for more input.

Preparing Jobs for Batch Execution

When you want to submit a job to the CMS Batch Facility for execution,
you should provide the same CMS and CP commands you would use to prerare
to execute the same job in your own virtual machine.

You must provide the batch virtual machine with read access to any
disk input files that are required for the job. You do this by supplying
the LINK and ACCESS command lines necessary. The batch virtual machine
has an A-disk (195), so you can enter commands to access your disks as
read-only extensions. For example, if you wanted the batch machine to
execute a program module named LONDON on your 291 disk, your input file
might contain the following:

234 IBM VM/370: CMS User's Guide

/JOB FISH 012345

CP LINK EBOSWELL 291 291 RR SECRET
ACCESS 291 B/A

LONDON

Similarly, if you are using the batch virtual machine to execute a
program using input and output files, you must supply the file
definitions:

CP LINK ARDEN 391 391 RR FOREST
ACCESS 391 B/A

FILEDEF INFILE D VITAL STAT
FILEDEF OUTFILE PUNCH

CP SPOOL PUNCH TO BOSWELL
LONDON

If you expect printed or punched output from your job, you may need
to include the spooling commands necessary to control the output. 1In
the above example, the batch machine's punch is spooled to userid
BOSWELL's virtual reader.

Any output printer files produced by your job are spooled by the
batch virtual machine to the printer. These files are spooled under your
userid and with the distribution code associated with your userid. You
can change the characteristics of these output files with the CP SPOOL
command:

CP SPOOL E CLASS T

If you want output to appear under a name other than your userid, use
the FOR operand of the SPOOL command:

CP SPOOL E FOR JONSON
Output punch files are spooled, by default, to the real system card

punch (under your userid), unless you issue a SPOOL command in the batch
job to control the virtual card punch of the katch virtual machine.

RESTRICTIONS ON CP AND CMS COMMANDS IN BATCH JOBS

The batch facility permits the use of many CP and most CMS commands.
The following CP commands can be used to control the batch virtual
machine:

CHANGE? MSG
CLOSE? QU ERY
DETACH?2 REWIND
DUMP SPOOL1
DISPLAY STORE
LINK3 TAG
Rotes:
1. These commands may not be used to affect the virtual card reader.

2. You can not use this command to detach any spoocling devices or the
system or IPL disks.

3. The LINK command must be entered on one line in the format
CP LINK userid vaddr vaddr mode password
None of the LINK command keywords (AS, PASS, TO) are accepted. If

the disk bhas no password associated with it, you must enter the

Section 12. Using the CMS Batch Facility 235

password as ALL. A maximum of 10 links may ke in effect at any one
time.

All CP commands in a batch job nmust be prefaced with the "Cp"
command.

Since the batch virtual machine reads input from its card reader, you
can not use the following commands or operands that affect the card
reader:

ASSGN SYSxxx READER (CMS/DOS only)
DISK LOAD

FILEDEF READER

READCARD

Invalid SET command operands are:

BLIP QUTPUT

EMSG REDTYPE
IMPCP RELPAGE
INPUT PROTECT

All the other operands of the SET command can ke used in a job executing
in the batch virtual machine.

BATCH FACILITY OUTPUT

Any files that you request to have printed during your job's execution
are spooled to the real system printer under your userid, unless you
have spooled it otherwise. Once released for processing, these output
files are under the control of the CP spooling facilities; if you are
logged on, you can control the disposition of these files Dbefore they
are printed with the CLOSE, PURGE, ORDER, and CHANGE commands.

Ooutput files produced by the batch virtual machine are identifiable
by the filename CMSBATCH in the CP spool file name field. The spool file
type field contains the filetype JOB, unless you specified a jobname on
the /JOB card. This applies to both printer and punch output files.

In addition to your regular printed output, the CMS Batch Facility
spools a console sheet that contains a record of all the lines read in,
and the responses, error messages, and return codes that resulted from
command or program execution. This file is identified by a spool file
name of BATCH and a spool file type of CONSOLE.

Using EXEC Files for Input to the Batch Facility

There are a variety of ways that EXEC procedures can help facilitate the
submission of jobs to the CMS Batch Facility. You can prepare an EXEC
file that contains all of the CMS commands you want to execute, and then
pass the name of the EXEC to the batch virtual machine. For exanmrgle,
consider the files COPY JCL and COPYF EXEC:

COPY JCL: /J0B CARBON 999999
EXEC COPYF
Vi

COPYF EXEC: COPYFILE FIRST FILE A SECOND
COPYFILE THIRD FILE A FOURTH

236 IBM VM/370: CMS User's Guide

Then, if you enter the commands

cp spool punch to cmsbatch
punch copy jcl * (noheader

the commands in the EXEC file are executed by the batch virtual
machine.

You could also use an EXEC to punch input to the batch virtual
machine. Using the same commands as in the example above, you might
have an EXEC named BATCOFY:

CP SPOOL PUNCH TO BATCH3

EPUNCH ,/JOB CARBON 999999

&PUNCH COPYFILE FIRST FILE A SECOND
EPUNCH COPYFILE THIRD FILE A FOURTH
EPUNCH /*

CP CLOSE PUNCH

HH
nn

Then, when you enter the EXEC name:
batcopy
The input lines are punched to the batch virtual machine.

The examples above are very simple; you protably would not go to the
trouble of sending such a job to the Latch virtual machine for
processing. The examples do, however, illustrate the two basic ways
that you can use EXEC procedures with the batch facility:

1. 1Invoking an EXEC procedure from a batch virtual machine.

2. Using an EXEC procedure to create a jok stream for the batch
virtual machine.

In either case, the EXECs that you use may be very simple or very
complicated. In the first instance, an EXEC might contain many steps,
with control statements to conditionally control execution, error
routines, and so on.

In the second instance, you might have an EXEC that is versatile, so
that it can be invoked with different arguments so as to satisfy more
than one situation. PFor example, if you want to create a simple EXEC to
send jobs to the batch virtual machine to be assembled, it might
contain:

/JOB ARIEL 888888

CP LINK ARIEL 191 391 RR LINKPASS
ACCESS 291 B/A

ASSEMBLE &1 (PRINT

CP SPOOL PUNCH TO ARIEL

PUNCH &1 TEXT A (NOHEADER

/*

If this file were named BATCHASM EXEC, then whenever you wanted the CMS
Batch Facility to assemble a source file for you, you would enter

batchasm filename

and the batch virtual machine would assemble the source file, print the
listing, and send you a copy of the resulting TEXT file.

Section 12. Using the CMS Batch Facility 237

SAMPLE SYSTEM PROCEDURES FOR BATCH EXECUTION

To extend the above example a 1little further, suppose you wanted to
process source files in languages other than the assembler language. You
want, also, for any user to be able to use this EXEC. You might have a
separate EXEC file for each language, and an EXEC to control the
submission of the job. This example shows the controlling EXEC file
BATCH and the ASSEMBLE EXEC.

BATCH EXEC:
THIS EXEC SUBMITS ASSEMBLIES/COMPILATIONS T0O CMS BATCH

- PUNCH BATCH JOB CARD;
- CALL APPROPRIATE LANGUAGE EXEC (&3) TO PUNCH EXECUT ABLE COMMANDS

LR

§CONTROL ERROR

§IF SINDEX GT 2 &SKIP 2

&TYPE CORRECT FORM IS: BATCH USERID FNAME FTYPE (LANGUAGE)
EEXIT 100

§ERROR £GOTO -ERR1

CP SPOOL D CONT TO BATCHCHMS

EPUNCH /JOB &1 1111 &2

SPUNCH CP LINK &1 191 291 RR SECRET
EPUNCH ACCESS 291 B/A

EXEC &3 62 &1

E§PUNCH /*

CP SPOOL D NOCONT

CP CLOSE D

CP SPOOL D OFF

SEXIT

-ERR1 SEXIT 100

CORRECT FORM IS: ASSEMBLE FNAME USERID

*

*

* PUNCH COMMANDS TO:

* - INVOKE CMS ASSEMBLER

* - RETURN TEXT DECK TO CALLER

*
&CONTRCL ERROR
&ERROR £§GOTO -ERR2
§PUNCH GLOBAL MACLIEBR UPLIB CMSLIB OSMACRO
&PUNCH CP MSG &2 ASMBLING ' &1 !
SPUNCH ASSEMBLE &1 (PRINT NOTERM)
SPUNCH CP MSG §2 ASSEMBLY DONE
SPUNCH CP SPOOL D TO &2 NOCONT
SPUNCH PUNCH &1 TEXT A1 (NOHEADER)
EBEGPUNCH
CP CLOSE D
CP SPOOL D CFF
RELEASE 291
CP DETACH 291
GEND
EBXIT
-ERR2 &EXIT 102

238 IBM VM/370: CMS User's Guide

Executing the Sample EXEC Procedure

If the above EXEC procedure is invoked with the line:
batch fay payroll assemble

The BATCHCMS virtual machine's card reader should contain the following
statements (in the same general form as a FIFO console stack) :

/J0B FAY 1111 PAYROLL

CP LINK FAY 191 291 RR SECRET
ACCESS 291 B/B

GLOBAL MACLIB UPLIB CMSLIB OSMACRO
CP MSG FAY ASMBLING ' PAYROLL !
ASSEMBLE PAYROLL (PRINT NOTERM)
CP MSG FAY ASSEMBLY DCNE

CP SPOOL D TO FAY NOCONT

PUNCH PAYROLL TEXT A1 (NOHEADER)
CP CLOSE D

CP SPOOL D OFF

RELEASE 291

CP DETACH 291

/*

When the batch facility executes this job, the commands are executed as
you see them: if you are logged on, you receive, in addition to the
normal messages that the batch facility issues, those messages that are
included in the EXEC.

A BATCH EXEC FOR A NON-CMS USER

Many installations run the CMS Batch Facility for non-CMS users to
submit particular types of jobs. Usually, a series of EXEC files are
stored on the system disk so that each user only needs include a card to
invoke the EXEC, which executes the correct CMS commands to process data
included with the job strean.

For example, if a non-CMS user wanted to compile FORTRAN source
files, the following BATFORT EXEC file could be stored on the systen
disk:

&CONTROL OFF

FILEDEF INMOVE TERM (RECFM F BLOCK 80 LRECL 80

FILEDEF OUTMOVE DISK &1 FORTRAN A1 (RECFM F LRECL 80 BLOCK 80
MOVEFILE IN OUT

GLOBAL TXTLIB FORTRAN

FORTGI &1 (PRINT)

&FORTRET = &ERETCODE

6IF ERETCODE NE 0 €GOTO -EXIT

PUNCH &1 TEXT A1 (NOHEADER)

-EXIT &EXIT &FORTRET

To use this EXEC, a non-CMS user might place the following real card
deck in the system card reader:

Section 12. Using the CMS Batch Facility 239

ID CMSBATCH
/JOB JOEUSER 1234 JOB10
BATFORT JOEFORT

source file

/* (end-of-file indicator)
/* (end-of-job indicator)

When the batch virtual machine executes this job, it begins reading
the EXEC procedure from disk, and executes one line at a time. When it
encounters the MOVEFILE command, it begins reading the source file from
its card reader (the batch facility interprets a terminal read as a
request to read from the card reader). It continues reading until it
reaches the end-of-file indicator (the /* card), and then resumes
processing the EXEC on the next line following +the MOVEFILE command

line.

Additional functions may be added to this EXEC procedure, Or others
may be written and stored on the systenm disk to provide, for example, a
compile, load, and execute facility. These EXEC procedures would allow
an installation to accommodate the non-CMS users and maintain common
user procedures.

240 IBM VM/370: CMS User's Guide

Section 13. Programming for the CMS Environment

This section contains information for assembler language programmers who
may occasionally need to write programs to be used in the CMS
environment. The conventions described here apply only to CMS virtual
machines; you can not execute these programs under any other operating
systems.

Program Linkage

Program linkages, in CMS, are generally made Ly means of a supervisor
call instruction, SVC 202. The sSVC handling routine takes care of
program linkage for you. The registers used, and their contents, are
discussed in the following paragrarphs.

Register 1: ©Points to a parameter 1list of successive doublewords. The
first entry in the list is the name of the called routine or prcgram,
and any successive doublewords may contain arquments passed to the
program. Parameter lists are discussed under "Parameter Lists."

Register 13: Contains the address of a 24-fullword save area, which you
can use to save your caller's registers. This save area is provided to
satisfy standard 0S and DOS linkage conventions; you do not need to use

it in CMS, since the SVC routines save the registers.

Register 14: Contains the return address of the SVC handling routines.
You must return control +to this address when you exit from your
progranm.

The CMS routines that get control by way of register 14 close files,
update your disk file directory, and calculate and type the time used in
program execution. These values appear in the CMS Ready message, which
is displayed at your terminal when your program finishes execution:

R;T=n.nn/x.xx hh:mm:ss

where n.nn is the CMS CPU time (in seconds) and x.xx is the combined CP
and CMS CP time. hh:.mm:ss is the time of day in hours, minutes, and
seconds.

Register 15: Contains your program's entry point address. You can use
this address to establish immediate addressatility in your program. You
should not use it as a base address, however, since all CMS SVCs use it

for communication with your programs.

Figure 20 shows a sample CMS assembler language prograr entry and exit.

Section 13. Programming for the CMS Environment 241

PROGRAM CSECT

1
| |
I USING PROGRAM,12 ESTABLISH ADDRESSABILITY |
i LR 12,15 I
! ST 14,SAVRET SAVE RETURN ADDRESS IN R14 I
1 . |
| . |
| . |
i L 14, SAVRET LOAD RETURN ADDRESS I
I LA 15,0 SET RETURN CODE IN R15 I
I BR 14 GO |
| SAVRET DS F SAVE AREA I
[]

Figure 20. Sample CMS Assembler Program Entry and Exit Linkage
RETURN CODE HANDLING

Begister 15, in addition to its role in entry linkage, is also used, in
CMS, as a return code register. All of the CMS internal routines pass a
completion code by way of register 15, and the SVC routines that receive
control when any program completes execution examine register 15.

If register 15 contains a nonzero value, this value is placed in the
CMS Ready message, following the "R":

R(nnnnn) ;T=n.nn/xXx.xXx hh:mm:ss

Tt is good practice, when you are executing programs in CMS, if your
programs do not use register 15 as a return code register, to place a
zero in it before transferring control back to CMS. Otherwise, the Ready
message may display meaningless data.

PARAMETER LISTS

When you execute a program from your terminal, a CMS scan roatine sets
up a parameter list based on your command input line. The parameter list
is doubleword aligned, with parameters occupying successive doublewords.
The scan routine recognizes blanks and parentheses as argument
delimiters; parentheses are placed, in the parameter 1list, in separate
doublewords.

For example, if you have a CMS MODULE file named TESTPROG, and you
call it with the command line:

testprog (file2)
The scan routine sets up the parameter list:

CMNDLIST DS 0D
DC CL8*'TESTPROG'
DC cLs* (!
DC CL8'FILE2"
DC cLg')?
DC 8X'FF!

?he last doubleword is made up of all 1s, to act as a delimiter.
If you enter any argument longer than 8 characters, it is truncated

and only the first 8 characters appear in the list. However, no error
condition results.

202 IBM VM/370: CMS User's Guide

Using Parameter lists

The scan routine that sets up this parameter list places the address of
the list in register 1, and then calls the SVC handling routine. The
SVC routine gives contrcl to the program named in the first doubleword
of the parameter list.

When your program receives control, it can examine the argument list
passed to it by way of register 1.

You can use this technique, also, to call CMS commands fronm your
programs.

When you use the LOAD and RUN commands to execute a program in CMS,
you can pass an argument list to the program on the command line. For
example, if you enter

load myprog
start * run1 proga

the arguments RUN1 and PROGA are placed in a parameter list and register
1 contains the address of this 1list when your program receives control.
If you want to use the RUN command to perform the load and start
functions, you could enter

run myprog (runil proga

The parenthesis indicates the beginning of the argument list.

Calling a CMS Command from a Program

You can call a CMS command from a program by setting up a parameter
list, like that shown above, and then issuing an SVC 202. The parameter
list you set up must have doublewords that contain the parameters or
arguments you would enter if you were entering the command from the
terminal. For example:

PUNCHER DS oD

DC CL8'PUNCH'
DC CL8'NAME'
DC CL8'TYPE!

DC CL8 %1
DC CL8" (¢
DC CL8' NOH!
DC 8X'FF!

In your program, when you want to execute this command, you should load
the address of the 1list into register 1, and issue the supervisor call
instruction (SVC) as follows:

LA 1,PUNCHER
SVC 202
DC AL4 (ERROR)

When you issue an SVC 202, you must supply an error return address in
the four bytes immediately after the SVC instruction. If the return code
(register 15) contains a nonzero value after returning from the SvVC
call, control passes to the address specified. In the above exanrle,
control would go pass to the instruction at the label ERROR.

Section 13. Programming for the CMS Environment 243

If you want to ignore errors, you can use the sequence:

LA 1,PUNCHER
SVC 202
DC ALY (*+0)

If you do not specify an error address, control is returned to the next
instruction after a normal return, but if there was an error executing
the CMS command, your program terminates execution.

If you want to execute a CP command or an EXEC procedure from a
program, you must use the CP and EXEC commands; for example

SPOOL DS 0D
DC cLs'ce!
DC CL8 'SPOOL"
DC CL8'PRINTER'
DC CL8 'CLASS?®
DC 8X'FF*

EXEC DC CL8 *EXEC!
DC CL8'PFSET!
DC BX*FF'

As an alternative, you can use the CMS LINEDIT macro to call a CP
command from a program. Specify DISP=CPCOMM on the macro instruction,
for example

LINEDIT TEXT'SPOOL E CLASS S',DISP=CPCOMM,DOT=NO

The LINEDIT macro is described in V¥M/370: CMS Command and Macro
Reference.

Executing Program Modules

MODULE files, in CMS, are nomnrelocatable programs. Using the GENMOD
command, you can create a module from any progran that uses O0S or CHMS
macros. When you create a module, it is generated at the virtual
storage address at which it is loaded, for example:

load myprog
genmod testit

The CMS disk file, TESTIT MODULE A, that is created as a result of this
GENMOD command, always begins execution at location X'20000*, ‘the
beginning of the user prograam area.

If you want to call your own progranm modules using SVC 202
instructions, you must be careful not to execute a module that uses the
same area of storage that your program occupies. If you want to call a
module that executes at location X'20000°', you can 1load the calling
program at a higher location, for example,

load myprog (origin 30000

ks long as the MODULE file called by MYPROG is no lcnger than X'10000°
bytes, it will not overlay your Frogram.

Many CMS disk-resident command modules also execute in the user

program area; if you call these commands from a program, you should load
your program at a higher location.

2u4 IBM VM/370: CMS User's Guide

THE TRANSIENT PRCGRAM AREA

To avoid overlaying programs executing in the user program area, you can
generate program modules to run in the CMS transient area, which is a
2-page area of storage that is reserved for the execution of programs
that are called for execution frequently. Many CMS commands run in this
area, which is located at X'E000'. To dgenerate a module to run in the
transient area, use the CRIGIN TRANS option when you load the TEXT file
into storage, then issue the GENMOD command:

load myprog (origin tranms
genmod setup (str

You should wuse the STR option of the GENMOD command so that when the
module 1is loaded into the transient area, storage remaining fronm
previously executed programs is cleared.

The two restrictions placed on command modules executing in the
transient area are:

1. They may have a maximum size of 8192 bytes, since that is the size
of the transient area. This size includes any free storage acquired
by GETMAIN macros.

2. They must be serially reusable. When a program is called by an SVC
202, if it has already been loaded into the transient area, it is
not reloaded.

The CMS commands that execute in the transient area are: ACCESS,
ASSGN, COMPARE, DISK, DLBL, FILEDEF, GENDIRT, GLOBAL, LISTFILE, MODMAP,
OPTION, PRINT, PUNCH, OQUERY, READCARD, RELEASE, RENAME, SET, SVCTRACE,
SYNONYM, TAPE, and TYPE.

CMS Macro Instructions

There are a number of assembler language macros distributed with the CMS
system that you can use when you are writing programs to execute in the
CMS environment. They are in the macro library CMSLIB MACLIB, which is
normally located on the system disk. There are macros to manipulate CMS
disk files, to handle terminal communications, to manipulate unit record
and tape input/output, and +to trap interrupts. These macros are
discussed in general terms here; for complete format descriptions, see
VM/370: CMS Command and Macro Reference.

MACROS FOR DISK FILE MANIPULATION

Disk files are described in CMS by means of a file system control block
(FSCB) . The CMS macro instructions that manipulate disk files use FSCBs
to identify and describe the files. When you want to manipulate a CMS
file, you <can refer to the file either by its file identifier,
specifying *filename filetype filemode' in quotation marks, or you can
refer to the FSCB for the file, specifying FSCB=fscb, where fscb is the
label on an FSCB macro.

To establish an FSCB for a file, you can use the PFSCB macro
specifying a file identifier, for example:

INFILE FSCB 'INPUT TEST A1!

Section 13. Programming for the CMS Environment 245

You can also provide, on the FSCB macro, descriptive information to be
used by the input and output macros. If you do not code an FSCB macro
for a file, an FSCB is «created inline (following the macro instruction)
when you code an FSREAD, FSWRITE, or FSOPEN macro.

The format of an PFSCE is listed Lkelow, followed by a description of
each of the fields.

Label Description

FSCBCOMM DC cLg" ¢ File system command

FSCBFN DC cLg* ¢ Filename

FSCBFT DC cLg" Filetype

FSCBFM DC CL2* ¢ Filemode

FSCBITNO DC H*'O" Relative record number (RECNO)

FSCBBUFF DC A'O" Address of buffer (BUFFER)

FSCBSIZE DC Fro? Number of bytes to read or write (BSIZE)
FSCBFV DC CL2'P! Record format - F or V (RECFHM)

FSCBNCIT DC H"1°? Number of records to read or write (NOREC)
FSCBNORD DC ALY (0) Number of bytes actually read

The labels shown above are not generated by the FSCB macro; to reference
fields within the FSCB by these labels, you must use the FSCBD macro to
generate a DSECT.

FSCBCOMM: When the FSCBFN, FSCBFT, and FPSCBFM fields are filled in, you
can fill in the FSCBCOMM field with the name of a CMS command, and use
the FSCB as a parameter list for an SVC 202 instruction. (You must

place a delimiter to mark the end of the command line.)

FSCBFN, FSCBFT, FSCBFM: The filename, filetype and filemode fields
identify the CMs file to be read or written. You can code the fileid on
a macro line in the format 'filename filetype filemode' or you can use
register notation. If you use€ register notation, the register that you
specify must point to an 18-byte field in the format:

FILEID DC cr8'filename’
DC CL8'filetype'’
DC CrL2'fm!

The fileid must be specified either in the FSCB for a file or on the
FSREAD, FSWRITE, FSOPEN, or FSERASE macro you use that references the
file.

FSCBITNO: The record, or item number indicates the relative record
number of the next record to be read or written; it can be changed with
the RECNO option. The default value for this field is 0. When you are
reading files, a 0 indicates that records are to be read sequentially,
beginning with the first record in the file. When you are writing
files, a 0 indicates that records are to Lke written sequentially,
beginning at the first record following the end of the file, if the file

already exists, or with record 1, if it is a new file.

FSCBBUFF: The buffer address, specified in the BUFFER option, indicates
the label of the buffer from which the record is to be written, or into
which the record is to be read. You should always supply a buffer large
enough to accommodate the longest record you expect to read or write.
This field must be specified, either in the FSCB, or on the FSREAD or

FSWRITE macro.

FSCBSIZE: This field indicates the number of bytes that are read or
written with each read or write operation. The default value is 0. If
the buffer that you use represents the full length of the records you
are going to be reading or writing, you can use the BSIZE option to set

this field equal to your buffer length. This field must be specified.

246 IBM VM/370: CMS User's Guide

FSCBFV: This 2-character field indicates the record format (RECFM) of

the file. The default value is F (fixed).

FSCBNOIT: This field contains the number of whole records that are to be
read or written in each read or write operation. You can use the NOREC
option in conjuncticn with the BSIZE option, to block and deblock

records. The default Value is 1.

FSCBNORD: Following a read operation, this field contains the number of
bytes that were actually read, so that if you are reading a
variable-length file, you can determine the size cf the last record
read. The FSREAD macro places the information from this field into

register 0.

Using the FSCB

The following example shows how you might code an FSCB macro to define
various file and buffer characteristics, and then use the same FSCB to
refer to different files:

FSREAD 'INPUT FILE A1',FSCB=COMMON
FSWRITE 'OUTPUT FILE A1',FSCB=COMMON

COMMON FSCB BUFFER=SHARE,RECFM=V,BSIZE=200
SHARE DS CL200

In the above example, the fileid specifications on the FSREAD and
FSWRITE macros modify the ©FSCB at the label COMMON each time a read or
write operation is performed. You can also modify an FSCB directly by
referring to fields by a displacement off the keginning of the FSCB, for
example,

MVC FSCB+8,=CL8*NEWNAME'

moves the name NEWNAME into the filename field of the FSCB at the label
FSCBFN.

As an alternative, you can use the FSCBD macro to generate a DSECT,
and refer to the labels in the DSECT to modify the FSCB, for example:

LA R5,INFSCB
USING FSCBD,R5S

MVC FSCBFN,NEWNAME

INFSCB FSCB 'INPUT TEST A1
NEWNAME DC CL8'OUTPUT®
FSCBD

In the above example, the MVC instruction places the filename OUTPUT

into the FSCBFN (filename) field of the FSCB. The next time this FSCB is
referenced, the file OUTPUT TEST is the file that is manipulated.

Section 13. Programming for the CMS Environment 247

CMS disk files are sequential files; when you use CMS macros to read and
write these files, you can access them sequentially with the FSREAD and
FSWRITE macros. However, you may also refer to records in a CMS file by
their relative record numbers, so you can, in effect, access reccrds
using a direct access method.

If you know which record you want to read or write, you can specify
the RECNO option on the FSCB macro, or on the FSOFEN, FSREAD, or FSWRITE
macros. When you use the RECNO option on the FSCB macro, you must
specify it as a self-defining term; for the FSOPEN, FSREAD, or FSWRITE
macros, you may specify either a self-defining term, as:

WRITE FSWRITE FSCB=WFSCB,RECNO=10
or using register notation, as follows:
WRITE FSWRITE FSCB=WFSCB,RECNO=(5)
where register 5 contains the record number of the record to be read.

When you want to access files sequentially, the FSCBITNO field of the
FSCB must be 0. This is the default value. When you are reading files
with the FSREAD macro, reading lkegins with record number 1. When you
are writing records to an existing file with the FSWRITE macro, writing
begins following the last record in the file.

To begin reading or writing files sequentially beginning at a
specific record number, you must specify the RECNO option twice: once to
specify the relative record number at which you want to begin reading,
and a second time to specify RECNO=0 so that reading or writing will
continue sequentially beginning after the record just read or written.
You can specify the RECNO option on the FSREAL or FSWRITE macro, Cr you
may change the FSCBITNO field in the FSCB for the file.

For example, to read the first record and then the 50th record cf a
file, you could code the following:

READ1 FSREAD FSCB=RESCE
FSWRITE FSCB=WFSCB
LA 5, RFSCB
USING FSCBD,5
MVC FSCBITHKO,=H'50"
READS0 FSREAD FSCB=RFSCB
FSWRITE FSCB=WFSCB

RFSCB FSCB 'INPUT FILE A1',BUFFER=COMMON
WFSCB FSCB 'OUTPUT FILE A1' ,BUFFER=COMMCN,BSIZE=120
COMMON DS CL120

FSCBD

In this example, the statements at the label READ1 write record 1 from
the file INPUT FILE A1 to the file OUTPUT FILE A1. Then, using the
DSECT generated by the FSCBD macro, the FSCBITNC field is changed, and
record 50 is read from the input file and written into the output file.

2u8 IBM VM/370: CMS User's Guide

If you want to read and write records from the same file, you must
issue an FSCLOSE macro to close the file whenever you switch from
reading to writing. For example:

LA 3,2
READ FSREAD FSCB=UPDATE,RECNO=(3) ,ERROR=READERR
FSCLOSE FSCB=UPDATE

FSWRITE FSCB=UPDATE,RECNO=(3), ERROR=WRITERR
FSCLOSE FSCB=UPDATE

IA 3,1(3)

B READ

UPDATE FSCB 'UPDATE FILE A1' ,BUFFER=BUF1,BSIZE=80

To execute a loop to read, update, and rewrite records, you must read
a record, <close the file, write a record, close the file, and so on.
Since closing a file repositions the read pointer to the beginning of
the file and the write pointer at the end of the file, you must specify
the relative record number (RECNO) for each read and write operation. In
the above example, register 3 is used to contain the relative record
number. It is initialized to begin reading with the second record in
the file and is incremented by 1 following each write operation.

The example above illustrated one of the situations in which you must
explicitly close a file with the FSCLOSE macro. Usually, CMS opens a
file whenever an FSREAD or PFSWRITE macro is issued for the file. When
control returns to CMS from a calling program, all open files are closed
by CMS, so you do not have to close files at the end of a program.

1f, however, you use an EXEC to execute a program to read or write a
file, the file is not closed by CMS until the EXEC completes execution.
Therefore, if you read or write the same file more than once during the
EXEC procedure, you must use an FSCLOSE macro to close the file after
using it in each program, or use the FSOPEN macro to open it before each
use, Otherwise, the read or write pointer is positioned as it was when
the previous program completed execution. :

CREATING NEW FILES: When you want to begin writing a new file using CMS
data management macros, there are two ways to ensure that the file you
want to create does not already exist. One way is to issue the PSSTATE

macro to verify the existence of the file.

A second way to ensure that a file does not already exist is to issue
an FSERASE macro to erase the file. If the file does not exist, register
15 returns with a code of 28. If the file does exist, it is erased.

FPigure 21 illustrates a sample program using CMS data management
macros.

Section 13. Programming for the CMS Environment 249

r
|LINE SOURCE STATEMENT
CSECT
PRINT

USING

NOGEN
*,12
12,15
14 ,SAVE

LA
% DETERMINE IF INPUT FILE EXISTIS
FSSTATE (2),ERROR=ERR1
%
I *
_IRD

2,8(,1) R2=ADDR OF INPUT FILEID IN PLIST
3,32(,1) R3=ADDR OF OUTPUT FILEID IN PLIST

ESTABLISH ADDRESSABILITY

2

READ A RECORD FROM INPUT FILE AND WRITE ON OUTPUT FILE
FSREAD (2) ,ERROR=EOF,BUFFER=BUFF1,BSIZE=80

| FSWRITE (3),ERROR=ERR2,BUFFER=BUFF1,BSIZE=80

| B
1 *
|* COME HERE IF

RD

LOOP BACK FOR NEXT RECORD

ERROF READING INPUT FILE

| EOF c 15,=F* 121 ENLC OF FILE 2 o

| BNE ERR3 ERROR IF NOT

i LA 15,0 ALL 0.K. — ZERO OUT R15
I B EXIT GO EXIT

|* IF INPUT FILE DOES NOT EXIST

| ERR 1 WRTERM 'FILE NOT FOUND',EDIT=YES

I B EXIT

|*

|* IF ERROR WRITING FILE

|ERR2 LR 10,15 SAVE
| LINEDIT TEXT='ERROR COCE
| B EXIT '

| *
|* IF READING ERROR WAS NOT NORMAL

RET CODE IN REG 10

IN WRITING FILE',SUB=(DEC, (10))

END OF FILE

| ERR3 LR 10,15 SAVE RET CODE IN REG 10
| LINEDIT TEXT='ERROR CODE IN READING FILE',SUB=(DEC, (10))
| *
|EXIT L 14,SAVE LOAD RETURN ADDRESS
| BR 14 RETURN TO CALLER
|
| BUFF1 DS CL80
|SAVE DS F
ERD
iotes:

(see note 2).

open macro is necessary.

messadge.

[P o o o —— T — — — —— — T — ——

The dots in the LINEDIT macro are substituted,
with the decimal value in register 10.

-o--The program might be invoked with a parameter list in the format
progname INPUT FILE A1 OUTPUT FILE A1. This line is placed in a
parameter list by CMS routines and addressed by register 1

The parameter list is a series of doublewords, each containing
one of the words entered on the command line.
past register 1 is the beginning of the input fileid; 24 bytes
beyond that is the beginning of the second fileid.
e'l‘he FSREAD and FSWRITE macros cause the files to be opened; no
CMS routines close all open files when
a program completes executicn.
The return code in register 15 is tested for the value 12,
which indicates an end-of-file condition.
the file, the program exits; otherwise,

Thus, 8 bytes

If it is the end of
it writes an error

during executicn,

b o o s e . S e S . e e T R e e S G TS e R e S e SPE e TR e TET e G e S e S e S g SN e S ey S e G g S et GNP ey S v S e D s S e)

Figure 21.

250 IBM VM/370: CMS User's Guide

A Sample Listing of a Program that Uses CMS Macros

CMS MACROS FOR TERMINAL COMMUNICATIONS

There are four CMS macros you can use to write interactive,
terminal-oriented programs. They are RDTERM, WRTERM, LINEDIT, and
WAITT. RDTERM and WRTERM only require a read/write buffer for sending
and receiving lines from the terminal. The third, LINEDIT, has a
substitution and translation capability.

When you use the WRTERM macro to write a line to your terminal you
can specify the actual text line in the macro instruction, for examrle:

DISPLAY WRTERM 'GOOD MORNING!'

You can also specify - the message text by referring to a buffer that
contains the message.

The RDTERM macro accepts a line from the terminal and reads it into a
buffer you specify. You could use the RDTERM and WRTERM macros together,
as follows:

WRITE WRTERM 'ENTER LINE®
READ RDTERM BUFFER
LR 3,0

REWRITE WRTERM BUFFER, (3)

BUFFER DS CL130

In this example, the WRTERM macro results in a prompting message. Then
the RDTERM macro accepts a line from the terminal and places it in the
buffer BUFFER. The length of the line read, contained in register 0 on
return from the RDTERM macro, ‘is saved in register 3. When you sgpecify
a buffer address on the WRTERM macro, you must specify the length of the
line to be written. Here, register notation is used to indicate that
the length is contained in register 3.

The LINEDIT macro converts decimal and hexadecimal data into EBCDIC,
and places the converted value into a specified field in an output
line. There are list and execute forms of the macro, which you can use
in writing reentrant code. Another option allows you to write lines to
the offline printer. The LINEDIT macro is described, with extensive
examples, in VM/370: CMS Command and Macro Reference. Figure 21 shows

how you might use the LINEDIT macro to convert and display CMS return
codes.

The WAITT (wait terminal) macro instruction can help you to
synchronize input and output to the terminal. If you are executing a
program that reads and writes to the terminal frequently, you may want
to issue a WAITT macro to halt execution of the program until all
terminal I/0O has completed.

CMS MACROS FOR UNIT RECORD AND TAPE I/0

CMS provides macros to simplify reading and punching cards (RDCARD and
PUNCHC) , and creating printer files (PRINTL). When you use either the
PUNCHC or PRINTL macros to write or punch output files while a progranm
is executing, you should remember to issue a CLOSE command for your
virtual printer or punch when you are finished. You can do this either
after your program returns control to CMS, by entering:

Section 13. Programming for the CMS Environment 251

cp close e
-- or --
cp close 4

or, you can set up a parameter list with the command line CP CLOSE E or
CP CLOSE D and issue an SVC 202.

The tape control macros, RDTAPE, WRTAPE and TAPECTL, can read and
write CMs files from tape, or control the positioning of a tape.

INTERRUPT HANDLING MACROS

You can set up routines in your programs to handle interrupts caused by
I/0 devices, by SVCs, or by external interrupts using the HNDINT,
HNDSVC, or HNDEXT macro instructiomns.

With the HNDINT macro instruction, you can specify addresses that are
to receive control when an interrupt occurs for a specified device. If
the WAIT option is used for a device specified in the HNDINT macro, then
the interrupt handling routine specified for the device does not receive
control until after the WAITD macro is issued for the device.

You can use, the HNDSVC macro to trap Supervisor Call instructions of
particular numbers, if, for example, you want to perform some additional
function before passing control, or you do not want any SVCs of the
specified number to be executed.

The CP EXTERNAL command simulates external interrupts in your virtual
machine; if you want to be able to pass control to a particular internal
routine in the event of an external interrupt, you can use the HNDEXT
MACIO.

252 IBM VM/370: CMS User's Guide

Part 3. Learning To Use EXEC

In previous sections, the CMS EXEC facilities were described in general
terms to acquaint you with the expressions used in EXEC files and the
basic way that EXECs function. Also, examples of EXEC procedures have
appeared throughout this publication. You should be familiar at least
with the material in "Introduction to the EXEC Processor" before you
attempt to use the information in Part 3.

"Section 14. Building EXEC Prccedures" describes the EXEC facilities
in detail, with examples of techniques you may find useful as you learn
about EXEC and develcp your own EXEC procedures.

Special considerations for using CMS commands in EXECs, and modifying
CMS command functions using EXEC procedures, are described in "section
15. Using EXECs With CMS Commands."

"Section 16. Refining Your EXEC Procedures" lists several techniques
you can use to make your EXEC files easier to use, and provides some
hints on debugging EXEC procedures.

If you are a frequent user of the CMS Editor, then you may be

interested in "sSection 17. Writing Edit Macros," which describes how to
create your own EDIT subcommands using EXEC procedures.

Part 3. Learning to Use EXEC 253

Section 14. Building EXEC Procedures

This section discusses various techniques that you can wuse when you
write EXEC procedures. The examples are intended only as suggestions:
you should not feel that they represent either the only way or the best
way to achieve a particular result. Many combinations and variations of
control statements are possible; in most cases, there are many ways to
do the same thing.

This section 1is called "Building EXEC Procedures" because you will
often find that once you have created an EXEC procedure and bequn to use
it, you continually think of new applications or new uses for it. Using
the CMs Editor, you may - quickly build the additions and make the
necessary changes. You are encouraged to develop EXEC procedures to help
you in all the phases of your CMS work.

What is a Token?

An executable statement is any line in an EXEC file that is processed by
the EXEC interpreter, including:

CMS command lines

EXEC control statements
Assignment statements
Null lines

Executable statements may appear by themselves on a line, or as the
object of another executable statement, for example in an &IF or &LOOP
control statement. If you want to execute CP commands or other EXEC
procedures in an EXEC, you mnmust use the CP and EXEC commands,
respectively. CP commands are passed directly to CP for processing.

211 executable statements in an EXEC are scanned by the CMS scan
routine. This routine converts each word (words are delimited by blanks
and parentheses) 1into an 8-character quantity, called a token. If a
word contains more than 8 characters, it is truncated on the right. If
it contains fewer than eight characters, it is padded with blanks. When
a parenthesis appears on the line, it is treated both as a delimiter and
as a token. For example, the line

ETYPE WHAT IS YOUR PREFERENCE (RED|BLUE)?
scans as follows:
ETYPE WHAT IS YCUR PREFEREN (RED|BLUE) ?

After a line has been scanned, each token is scanned for ampersands,
and substitutions are performed on any variable symbols in the tokens
before the statement is’ executed.

Nonexecutable statements are lines that are not processed by the EXEC
interpreter, that is comment lines (those that begin with an *), and
data lines following an &BEGEMSG, &BEGPUNCH, §&BEGSTACK, or &BEGTIYPE
control statement. since these lines are not scanned, words are not
truncated, and tokens are neither formed nor substituted.

Since all executable statements in an EXEC are scanned, and the data
items are treated as tokens, the term "token" is used throughout this

Section 14. Building EXEC Procedures 255

section to describe data items before and after scanning. The VM/370:
CMS Command and Macro Referemce, which contains the formats and
descriptions of the EXEC control statements, uses this convention as
well. Therefore, as Yyou create your EXEC procedures, you may think of
the items that you enter on an EXEC statement as tokens, since that is

how they are used by the EXEC interpreter.

Variables

To make the best use of the CMS EXEC facilities, you should have an
understanding of how the EXEC interpreter performs substitutions on
variable symbols contained in tckens. Some examples follow. For each
example, the input lines are shown as they would appear in an EXEC file
and as they would appear after being interpreted and executed by EXEC.
Notes concerning substitution follow each example.

SIMPLE SUBSTITUTION: Most of the EXEC examples in this publication
contain variable symbols that result in one-for-one substitution. Most
of your variables, too, will have a similar relationship.

Lines After Substitution
&X = 123 €X = 123
ETYPE §&X ETYPE 123

The EXEC interpreter accepts the variable symkol &X and assigns it the
value 123. In the second statement, £X is substituted with this value,
and the control statement &§TYPE is recognized and executed.

Lines After Substitution
&Y = 456 €Y = 456
€7 = &Y £€Z = 456

The symbol 6§Y is assigned a value of 456. In the second statement, the
symbol &Y is substituted with this value, and this value is assigned to
&Z.

SUBSCRIPTS FOR VARIABLES: Since each token is scanned more than once for

ampersands, you can simulate subscripts by using two variable values in
the same token.

Lines After Substitution
&1 = ALPHA &1 = ALPHA

&2 = BETA &2 = BETA

SINDEX1 = 1 EINDEX1 = 1

&TYPE &&SINDEX1 &STYPE ALPHA
GINDEX1 = 2 EINDEX1 = 2

&ETYPE &&EINDEX1 S§TYPE BETA

In the statement STYPE &EINDEX1, the token SINDEX1 is scanned the first
time, and the value &INDEX1 is substituted with the value 1. The token
now contains &1, which is substituted with the value ALPHA on a second
scan. When the value of &§INDEX1 is changed to 2, the value of &EINDEX1
also changes.

Lines After Substitution

§I = 2 &I = 2 P
EX6I = 5 £§X2 = 5

&I = 1 81 = 1

EXEI = 2 &X1 = 2

X = EXEI + EXEXEX E8X = 2 + 5

256 IBM VM/370: CMS User's Guide

In the statement §&X&I = 5, analysis of the first tcken results in the
substitution of the symbol &I with the value of 2. The symbol £X2 is
assigned a value of 5.

The value of &I is changed to 1, and the symbol §X1 is assigned a
value of 2.

In the 1last statement, §X = &X&EI + EXEXEI, the value of €I in the
token &XEI is replaced with 1, then the symbol X1 is substituted with
its value, which 1is 2. The token §&XEXEI is substituted after each of
three scans: €I is replaced with the value 1, to yield the token &X&X1.
The symbol &X1 has the value of 2, so the token is reduced to X2, which
has a value of 5.

COMPCUND VARIABLE SYMBOLS: Variable symbols may also be combined with
character strings.

Lines After Substitution
&X = BEE &X = BEE

&STYPE HONEY&EX &ETYPE HONEYBEE
ETYPE ABUMBLEEX &TYPE ABUMBLE

In the above example, the first symbol encountered in the scan of
HONEYEX is €X, which is substituted with the value &BEE. 1In the second
&§TYPE statement, the X is truncated when the line is scanned; the symbol
& is an undefined symbol and is therefore set to blanks.

Lines After Substitution
&§X = HONEY E€X = HONEY

€Y = BEE &Y = BEE

&ETYPE &6X&Y ETYPE

In the above example, after the symbol &Y is substituted with the value
BEE, the token contains the symbol E&XBEE, which is an undefined symbol,
so the symbol is discarded.

Lines After Substitution
€123 = ABCDE §123 = ABCDE

€X = 12345678 §X = 12345678
ETYPE ABLE&EX &TYPE ABLEABCD

In this example, the substitution of €X in the token ABLE§&X results in
the character string ABLE£12345678, which is truncated to 8 characters,
or ABLE&123. The scan continues, and £123 is substituted with the
appropriate value, to result in ABCDE. The token is again truncated to 8
characters.

SUBSIITUTING LITERAL VALUES: You might want an ampersand to appear in a

token. You can wuse the &LITERAL built-in function to suppress the
substitution of variable symbols in a token.

Lines After Substitution
&9 = HELLO €9 = HELLO

&A = ELITERAL §&9 &A = ELITERAL §&9
&STYPE €A ETYPE &9

Because the value of &A was defined as a literal &9, no substitution is
performed.

Lines After Substitution
STYPE = QUERY ETYPE = QUERY
&TYPE BLIP QUERY BLIP

In the above example, even though §TYPE is an EXEC keyword, it is
assigned the value of QUERY, and substitution is performed when it

Section 14. Building EXEC Procedures 257

appears on an input 1line. In this example, when it is substituted with
its value, the result is a command line which is passed to CMS for
processing.

Lines After Substitution

&CONTROL = FIRST ECONTROL = FIRST
ELITERAL &CONTROL ALL &CONTROL ALL

In this example, &CONTROL is assigned a value as a variable symbol, but
when it is preceded by the built-in function &LITERAL, the substitution
is not performed, so EXEC processes it as a control statement.

HEXADECIMAL AND DECIMAL CONVERSIONS: You can perform hexadecimal to
decimal and decimal to hexadecimal conversions in an EXEC if you use the
control statement &HEX ON. To convert hexadecimal to decimal, you must
use an assignment statement, prefacing the hexadecimal value you want to
convert with the characters X' and assigning the value to a variable

symbol.

Lines After Substitution
EHEX ON EHEX ON

EDEC = X'10 &EDEC = X'10

&ETYPE §&DEC ETYPE 16

ECOUNT = 15 &COUNT = 15

EDECNT = X'6COUNT EDECNT = X'15
E§TYPE EDECNT ETYPE 21

When the characters X' are found in any EXEC statement other than an
assignment statement, the value following them is considered a decimal
value and is converted to its hexadecimal equivalent.

Lines After Substitution
EHEX ON &EHEX ON

ETYPE X'20 ETYPE 14

&VAL = 3000 &§VAL = 3000

ETYPE X'&VAL ETYPE BBS

&§TYPE X'13107299 ETYPE 2000

In the last statement above, the characters 99 are truncated before
substitution occurs, since EXEC tokens can be a maximum of 8
characters.

To suppress hexadecimal conversion during an EXEC procedure after
having used it, you can use the EXEC control statement

&EHEX OFF

so you can use tokens containing the characters X' without the EXEC
processor converting them to hexadecimal.

Arguments

An argument in an EXEC procedure is one of the special variable symbols
&1 through §30 that are assigned values when the EXEC is invoked. For
example, if the EXEC named LINKS is invoked with the line

links viola ariel oberon

the tokens VICLA, ARIEL, and OBERON are arguments, and are assigned to
the variable symbols &1, &2, and &3, respectively.

258 IBM VM/370: CMS User's Guide

You can pass as many as 30 arquments to an EXEC procedure; thus the
variable symbols you can set range from &1 to &30. These variables are
collectively referred to as the special variable &n. Once these symbols
are defined, they can be used and manipulated in the same manner as any
other variable in an EXEC. They can be tested, displayed, changed, and,
if they contain numeric quantities, used arithmetically.

&IF €2 EQ PRINT &GOTO -PR

ETYPE &1 IS AN INVALID ARGUMENT
&1 = 2

&CT = &1 + 100

The above examples illustrate some explicit methods of manipulating the
&n variables. They can also be implicitly defined or redefined by two
EXEC control statements: &ARGS and SREAD ARGS.

An &ARGS control statement redefines all of the special &n
variables. The statement

&ARGS A B C

assigns the value of A, B, and C to the variables &1, &2, and &3 and
sets the remaining variables, &4 through &30, to blanks.

You can also redefine arquments interactively by using the &READ ARGS
control statement. When EXEC processes this statement, a read request is
presented to your terminal, and the tokens you enter are assigned to the
én variables. For example, the lines

&TYPE ENTER FILE NAME AND TYPE:
&EREAD ARGS
STATE &1 &2 *

request you to enter two tokens, and then treat these tokens as the
arguments &1 and &§2. The remaining variables &3 through &30 are set to
blanks.

If you want to redefine specific &n variables, and leave the values
of others intact, you can either redefine the individual variables in

separate assignment statements, cr use the variable symbol in the &ARGS
or &READ ARGS statement. For example, the statement

EARGS CONT &2 &3 RETURN &5 &6 &7 &8 &9 £10

assigns new values to the variakles &1 and &4, but dces not change the
existing values for the remaining symbols through &10.

If you need to set an argqument or &n special variable to blanks,
either on an EXEC command line or in an &§ARGS or &READ ARGS control
statement, you can use a percent sign (%) in its place. For example, the
linpes:

&EARGS SET QUERY % TYPE
ETYPE &1 62 &3 &4

result in the display
SET QUERY TYPE

The symbol &3 has a value of blanks, and as a null token, is discarded
from the line.

Section 14. Building EXEC Procedures 259

USING THE &INDEX SPECIAL VARIABLE

The EXEC special variable, SINDEX, initially contains a numeric value
corresponding to the number of arguments defined when the EXEC was
invoked. The value of &SINDEX is reset whenever an &ARGS or &REAL ARGS
control statement is executed.

&INDEX can be useful in many circumstances. If you create an EXEC
that may expect any number of arguments, and you are going to perform
the same operation for each, you might set a counter and use the value
of &SINDEX to test it. ©For example, an EXEC named PRINTX accepts
arquments that are the filenames of ASSEMBLE files:

§CT = 1

ELOOP 2 &CT > &INDEX
PRINT &§6CT ASSEMBLE
&CT = &§CT + 1

In the preceding example, the token &§CT is sulkstituted with &1, &2, and
so on until all of the arguments entered on the PRINTX line are used.

You can also use SINDEX to test the number of arguments entered. 1If
you design an EXEC to expect at least two arguments, the procedure might
contain the statements:

&IF GINDEX LT 2 §GOTO -ERRI1

~-ERR1 &§TYPE INVALID COMMAND LINE
EEXIT 1

In this example, if the EXEC is invoked with one or no arguments, an
exrror message is displayed and the EXEC terminates processing with a
return code of 1.

AS another example, suppose you wanted to supply an EXEC with default
arquments, which might or might not be overridden. If the EXEC |is
invoked with no arguments, the default values are in effect; if it is
invoked with arquments, the arguments replace the default values:

&DISP = PRINT

&ECOUNT = 2

EIF &INDEX GT 2 &EXIT 1
&IF &INDEX EQ 0 &GOTO -GO
ECOUNT = &1

&IF EINDEX = 2 E&DISP = &2
-GO

Default values are supplied for the variables §DISP and &COUNT. Then,
EINDEX is tested, and the variables are reset if any arguments vere
entered.

CHECKING ARGUMENTS

There are a number of tests that you can perform on arguments passed to
an EXEC. In some cases, you may want to test for the length of a
specific argument or to test whether an argument is character data or
numeric data. To perform these tests, you can use the EXEC built-in
functions ELENGTH and &DATATYPE.

260 IBM VM/370: CMS User's Guide

To use either SLENGTH or SDATATYPE, you must first assign a variable
to receive the result of the function, and then test the variable. For
example, to test whether an entered argument is 5 characters long, you
could use the statements:

ELIMIT = ELENGTH &1
§IF ELIMIT GT 5 &EXIT &LIMIT

When these statements are executed, if the first argument (&1) is
greater than 5 characters, the exit is taken, and the return code
indicates the length of &1.

If you wish to check whether a number was entered for an argument,
use the §DATATYPE function:

§STRING = EDATATYPE &2
&IF &§STRING ~= NUM 6GOTO —-ERRY4

In this example, the second arqument expected by the EXEC must be a
numeric quantity. If it is not, a branch is taken to an error exit
routine.

often, you may create an EXEC that tests for specific arguments and
then takes various paths, depending on the argument. For example:

&IF &2 = PRINT &GOTO ~-PR
&IF &2 = TYPE &GOTO -TY
&IF £§2 = ERASE &GOTO -ER
SEXIT

In this EXEC, if the value of §2 1is not PRINT, TYPE, or ERASE, or was
not entered, the EXEC terminates processing.

€* and &%

There are two special EXEC keywords that you may use to test arguments
passed in an EXEC. They are &% and &$, which can be used only in an &IF
or an &LOOP control statement. They test the entire range of numeric
variables &1 through &30, as follows:

§$: The special token &$ is interpreted as "any of the variables &1, &2,
wee, £§30." That is, if the value of any one of the numeric variables
satisfies the established condition, then the &IF statement is
considered to be true. The statement is false only when none of the
variables fulfills the specified requirements.

As an example, suppose you want to make sure that some particular
value is passed to the BXEC. You can check to see if any of the
arguments satisfy this condition, as follows:

EIF &€$ EQ PRINT &SKIP 2
&TYPE PARM LIST MUST INCLUDE PRINT
SEXIT

In this example, the path to the ETYPE statement is taken only when none

of the arguments passed to the EXEC procedure equal the character string
PRINT.

Section 14. Building EXEC Procedures 261

&*: The special token &* is interpreted as "all of the variables &1, &2,
euvey &30." That is, if the value of each of the numeric variables
satisfies the established condition, +then the §&IF statement 1is
considered to be true. The statement is false when at least one of the
variables fails to meet the specified requirements.

Use &% to test for the absence of an argument as follows:
&IF &* NE ASSEMBLE &EXIT 3

In this example, if an EXEC is invoked, and none of the arguments equals
SSEMBLE, the EXEC terminates with a return code of 3.

The tokens &% and &€$ are set by arguments entered when an EXEC is
invoked and reset when you issue an &ARGS or &§READ ARGS control
statement. If either &* or 6% is null because no arguments are entered,
the §IF statement is considered a null statement, and no error occurs.

Execution Paths in an EXEC

You have already seen examples of the §&IF, &§GOTO, &SKIP, and &LOOP
control statements. A more detailed discussion on each of these
statenments and additional techniques for controlling execution paths in
an EXEC procedure follow.

LABELS IN AN EXEC PROCEDURE

In many instances, an execution control statement in an EXEC procedure
causes a branch to a particular statement that is identified by a 1label.
The rules and conventions for creating syntactically correct EXEC labels
are:

e A label must begin with a hyphen (dash), and must have at least one
additional character following the hyphen.

e Up to seven additional alphameric characters may follow the hyphen
(vith no intervening blanks). However, the sequence,

&GOTO -PROBABLY

-PROBABLY

executes successfully, because when each statement is scanned, the
token -~-PROBABLY is truncated to the same 8-character token,
-PROBABL.

e A label name may be the object of an §GOTO or §&LOOP control
statement.

e A label that is branched to must be the first token on a line. It

may stand by itself, with no other tokens on the 1line, or it may
precede an executable CMS command or EXEC control statement.

262 IBM VM/370: CMS User's Guide

The following are examples of the correct use of labels:

§GOTO -LABt1

-LAB1

-LAB2 &§CCNTINUE

-CHECK &IF &INDEX EC O &GOTO -EXIT
E&IF GEINDEX LT 5 &SKIP

-EXIT &EXIT 4

&TYPE SLITERAL SINDEX VALUE IS &INDEX

CONDITIONAL EXECUTION WITH THE &IF STATEMENT

The main tool available to you for controlling conditional execution in
an EXBC procedure is the &IF control statement. The §&IF control
statement provides the decision-making ability that you need to set up
conditional branches in your EXEC procedure.

One approach to decision-making with the §&IF control statement is to
compare two tokens, and perform some action fkased on the result of the
comparison. When the comparison specified is equal (or true), the
executable statement is executed. When the comparison is wunequal (or
false), control passes to the next sequential statement in the EXEC
procedure. An example of a simple &IF statement is:

&IF &1 EQ §2 &§TYPE MATCH FOUND

If the comparand values are not equal, the statement &§TYPE MAICH
FOUND is not executed, and control passes to the next statement in the
EXEC procedure. If the comparand values are equal, the statement &TYPE
MATCH FOUND is executed before control passes to the next statement.
&§IF statements can also be used to establish a ccmparison between a
variable and a constant. For example, if a terminal user could properly
enter a YES or NC response to a prompting message, you could set up &IF
statements to check the response as follows:

&READ ARGS ,

&IF &1 EQ YES &GOTO -YESANS

&IF &1 EC NO &GOTO -NOANS

&ETYPE &1 IS NOT A VALID RESPONSE (MUST BE YES OR NO)
EEXIT

-YESANS

In this example, the branch to -YESANS is taken if the entered
argument is YES; otherwise, control passes to the next &IF statement.
The branch to -NOANS is taken if the argument is NO; otherwise, control
passes to the ETYPE statement, which displays the entered argument in an
error message and exits.

The test performed in an &IF statement need not be a simple test of
equality between two tokens; other types of comparisons can be tested,
and more than two variables can be involved. The tests that can be
performed and the symbols you can use to represent them are:

Section 14. Building EXEC Procedures 263

Symbol Mpnemonic Meaning

= EQ A equals B

= NE A does not equal B

< LT A is less than B

<= LE A is less than or equal to B (not greater than)
> GT A is greater than B

>= GE A is greater than or equal to B (not less than)

Compound &IF Statements

You can place multiple §IF control statements on one line, to test a
variable for more than one condition. For example, the statement

&IF ENUM GT 5 &IF &NUM LT 10 &TYPE O.K.
checks the variable symbol &NUM for a value greater than 5 and less than
10. If both of these conditions are satisfied, the &IF statement is
true, and the ETYPE statement is executed. If either condition is false,
then the §TYPE statement is not executed.

The number of &IF statements that may be nested is limited only by
restrictions placed on the record length of the EXEC file.

BRANCHING WITH THE &§GOTO STATEMENT

The &§GOTO control statement allows you to transfer control within yourn
EXEC procedure
e To a specified EXEC label somewhere in the EXEC file:
&GOTO -TEST
vhere -TEST is the label to which control is passed.
e To a particular line within the EXEC file. For example,
§GOTC 15
results in control being passed to statement 15 in the EXEC file.
e Directly to the top of the EXEC file. For example,
&§GOTO TOP

passes control to the beginning of the EXEC procedure.

The &GOTO control statement can be coded wherever an executable
statement is permitted in an EXEC procedure. One of its common uses is
in conjunction with the &IF control statement. For example, in the
statement:

&IF EINDEX EQ O &§GOTO -ERROR
the branch to +the statement labeled -ERROR is taken when the value of

the EINDEX special variable is zero. Otherwise, control passes to the
next sequential statement in the EXEC procedure.

264 IBM VM/370: CMS User's Guide

An &§GOTO statement can also stand alone as an EXEC control statement.
When coded as such, it forces an unconditional branch to the specified
location. For example, you might create an EXEC that has several
execution paths, each of which terminates with an §&GOTO statement
leading to a common exit routine:

-PATH1 &CONTINUE

§GOTO -EXIT
~-PATHZ &CONTINUE

§GOTO -EXIT
&EPATH3 &§CONTINUE

~EXIT &§CONTINUE

You can use the &GOTC control statement to establish a 1loop. For
example:

&§GLOBAL1 = E&GLOBAL1 + 1
&TYPE ENTER NUMBER:

&READ VARS &NEXT

&§IF .&ENEXT = . &GOTO -FINIS
EIF &GLOEALY = 2 E&TOTAL = 0
&TOTAL = 6TOTAL + ENEXT
§GOTO TOP

-FINIS

STYPE TOTAL IS &TOTAL

In this EXEC example, all of the statements, through the &§GOTO TOP
statement, are executed repeatedly until a null line is entered in
response to the prompting message. Then, the branch is taken to the
label -FINIS and the total is typed.

Note the use of the special variable §6GLOBAL1 in the preceding
example. The &GLOBALn special variables are self-initializing, and have
an initial value of 1.

Using the £GOTO Control Statement

When an EXEC procedure processes an &GOTO statement, and searches for a
given label or 1line number, the scan begins on the line following the
&§GOTO statement, proceeds to the bottom of the file, then wraps around
to the top of the file and continues to the 1line inmediately preceding
the §GOTO statement. If there are duplicate labels in an EXEC file, the
first label encountered during the search is the one that is branched
to. '

If the label or line number is not found during the scan, EXEC
terminates processing and displays the message:

ERROR IN EXEC FILE filename, LINE n - &SKIP or §GOTO ERROR

If the label or line number is found, control is passed to that location
and execution continues.

Section 14. Building EXEC Procedures 265

ERANCHING WITH THE &§SKIP STATEMENT

The &SKIP control statement provides you with a second method of passing
control to various points in an EXEC procedure. Instead of branching to
a named or numbered location in an EXEC procedure, &SKIP passes control
a specified number of lines forward or backward in the file.

You pass control forward in an EXEC by specifying how many lines to
skip. For example, to handle a conditional exit from an EXEC procedure,
you could code the following:

6IF ERETCODE EQ 0 E&SKIP
&EXIT &RETCODE

where the &EXIT statement is skipped whenever the value of &RETICODE
equals zero. If the value of &RETCODE does not equal zero, control
passes out of the current EXEC procedure with a return code that is the
nonzero value in &RETCODE. Note that when no §&SKIP operand is
specified, a value of 1 is assumed.

A succession of §SKIP statements can be used to perform multiple
tests on a variable. For example, suppose an argument should ccntain a
value from 5 to 10 inclusive:

&IF &1 LT 5 &SKIP
&IF &1 LE 10 &SKIP
&TYPE &1 IS NOT WITHIN RANGE 5-10

If the value of &1 is less tham 5, control passes to the §TYPE control
statement, which displays the erroneous value and an explanatory
message. If the value of §1 is greater than or equal to 5, the next
statement checks to see if it is less than or equal to 10. If this is
true, then the value is between 5 and 10 inclusive, and execution
continues following the STYPE statement.

When you want to pass control to a statement that precedes the
current line, determine how many lines backward you want to go, and code
&SKIP with the desired negative value:

§VAL = 1

&TYPE &VAL

E§VAL = EVAL + 1

&§IF EVAL NE 10 &SKIP -2

In this EXEC, the STYPE statement is executed repeatedly until the value
of &VAL is 10, and then execution continues with the statement following
the &IF statement.

USING COUNTERS FOR LOOP CONTROL

A primary consideration in designing a portion of an EXEC procedure that
is to be executed many times is how to control the number of
executions. One way to control the execution of a sequence of
instructions is to create a loopr that tests and changes the value of a
counter.

Before entering the loop, the counter is initialized to a value.
Bach time through the 1loop, the counter is adjusted (increased or
decreased) toward a limit value. When the limit value is reached (the
counter value is the same as the limit value), control passes out of the
loop and it is not executed again. For example, the following EXEC
initializes a counter based on the argument &1:

266 IBM VM/370: CMS User's Guide

&IF &INDEX EQ 0 &EXIT 12

ETYPE COUNT IS &1

&1 =861- 1

EIF &1 GT 0 &SKIP -2

When this EXEC procedure is invoked, it checks that at 1least one

argument was passed to it. If an argument is passed, it is assumed to
be a number that indicates how many times the loop is to execute. Each
time it passes through the loop, the value of &1 is decremented by 1.
When the value of &1 reaches zero, control passes from the loop to the
next sequential statement.

There are several ways of setting, adjusting, and testing counters.
some ways to set counters are by:

e Reading arguments from a terminal, such as:
&READ VARS E&COUNT1 ECOUNT2

e Assigning an arbitrary value, such as:
§COUNTER = 43

e Assigning a variable value or expression, such as:
&ECOUNTS = GINDEX - 1

Counter values can be increased or decreased by any increment or
decrement that meets your purposes. For example:

&COUNTEM = &COUNTEM - &RETCODE
&ECOUNT1 = &COUNT + 100

LOOP CONTROL WITH THE &LOOP STATEMENT

A convenient way to control execution of a sequence of EXEC statements
is with the £LOOP control statement. An &ELOOP statement can be set up
in four wvays:

e To execute a particular number of statements a specified number of
times. For example, the statement

&§LOOP 3 2

indicates that the three statements following the ELOOP statement are
to be executed twice.

e To execute a particular number of statements until a specified
condition is satisfied. For example:

§LOOP 4 &X = 0

The four statements following this statement are executed until the
value of &X is 0.

e To execute the statements down to (and including) the statement
identified by a label for a specified number of times. For example:

&§LOOP —-ENDLOOP 6
The statements between this §LOOP statement and the 1label -ENDLOOP

are executed six times.

Section 14. Building EXEC Procedures 267

e To execute the statements down to (and including) the statement
identified by a label until a specified condition is satisfied. 1In
the following example

&ELOOP -ENDLOOP &X = 0
the statements are executed repeatedly until the value of &€X is 0.

The numbers specified for the number of lines to execute and the
number of times through the loop must be positive integers. You can use
a variable symbol to represent the integer. If a label is used to
define the 1limit of the 1loop, it must follow the ELOOP statement (it
cannot precede the §LOOP statement).

In a conditional &LOOP statement, any variable symbols in the
conditional phrase are substituted each time the loop is executed. For
example, the statements:

EX = 0

ELOOP -END &X EC 2
X = &X + 1

-END &TYPE &X

are interpreted and executed as follows:

1. The variable §X is assigned a value of 0.

2. The &LOOP statement is interpreted as a conditional form; that is,
to loop to -END until the value of §X equals 2. Since the value of
&€X is not 2, the loop is entered.

3. The variable &X is incremented by 1 and is then displayed.

4. Control returns to the beginning of the loop, where &§X is tested to
see if it equals 2. Since it does not, the loor is executed again
and 2 is displayed. The next time through the loop, when &X equals

2, control is passed to the EXEC statement immediately following
the label -END.

When this EXEC procedure is executed, the following 1lines are
displayed:

1
2

at which time the value of &X equals 2; the loop is not executed again.
Another example of a conditional loop is:
€Y = ELITERAL A&B
§LOOP 2 .&X EQ ELITERAL .&
&X = E&SUBSTR &Y 2 1
ETYPE §&X
These statements are interpreted and executed as follows:

1. The variable &Y is set to the literal value AS&B.

2. The two statements following the ELOOP statement are to be executed
until the value of &X is §.

3. The ESUBSTR built-in function is used to set the variable §X to the

value of the second character in the variable &Y, which is a
literal ampersand (§).

268 IBM VM/370: CMS User's Guide

4. The ampersand is typed once, and the loop does not execute again
because the condition that the value of §X be a literal ampersand
is met.

NESTING EXEC FROCEDURES

If you want to use an EXEC procedure within another EXEC, you must use
the EXEC command to execute it., For example, if you have the statement

EXEC TEST
in an EXEC procedure, it invokes the EXEC procedure TEST.

The EXEC interpreter can handle up to 19 levels of recursion at one
time, that is, up to 19 EXECs may be active, one nested within ancther.
An EXEC may also call itself.

You can test the &§GLOBAL special varialkle to see if an EXEC is
executing within another procedure or not. For example, if the file
GLOBAL EXEC contained the lines:

&IF &GLOBAL EQ 2 &GOTO -2NDPASS

EXEC GLOBAL

-2NDPASS &TYPE SECOND PASS BEGINS
then when the line "EXEC GLOBAL" is executed, control passes to the

beginning of the EXEC; the value of &§GLOBAL changes from 1 to 2; and
control is passed to the ETYPE statement at the label 2NDPASS.

Passing Argquments to Nested Procedures

Variables in an EXEC file have meaning only within the particular
procedure in which they are defined. You cannot set up a variable in one
EXEC, and test that variable in a nested procedure. The exceptions to
this are the ten special variables &GLOBALO through §&GLOBALY9. These
variables can only contain integral numeric values; you cannot assign
them character-string values. These variables can be used to set up
arguments to pass to nested procedures, or to communicate between EXEC
files at different recursion levels.

EXITING FROM EXEC PROCEDURES

Execution in an EXEC procedure proceeds sequentially through a file,
line by line. When a statement causes control to be passed to another
statement, execution continues at the second statement, and again
proceeds sequentially through the file. When the end of the file is
reached, the EXEC terminates processing. Frequently, however, you may
not want processing to continue to the end of the file. You can use the
EEXIT statement to cause an immediate exit from EXEC processing and a
return to the CMS environment. If the EXEC has been invoked from

Section 14, Building EXEC Procedures 269

another EXEC, control is returned to the calling EXEC f£file. For
example, the statement

6IF &RETCODE -~= 0 &EXIT

would cause an immediate exit from the EXEC if the return code from the
last issued CMS command was not zero.

You can use the &EXIT statement to terminate each of a series of
execution paths in an EXEC. For example, using the following
statements,

&IF &1 EQ PRINT &§GOTO ~PRINT
&IF &1 EQ TYPE &GOTO -TYPE

&EXIT

you ensure that once the path through the -PRINT routine has been taken,
the EXEC does not continue processing with the -TYPE routine.

The &EXIT control statement also provides a special function, which
allows you to pass a return code to CMS, or to the program or EXEC which
called this EXEC. You specify the return code value on the EEXIT
control statement as follows:
SEXIT U
Execution of this line results in a return to CMS with a Ready message:
R(00004) ;
If you have a variety of exits in an EXEC, you can use a different value
following each &EXIT statement, to indicate which path had been taken in
the EXEC.) -

You can also use a variable symbol as the value to be passed as the
return code:

EEXIT &VAL
Another common use of the EEXIT statement is to cause an exit to be
taken following an error in a CMS command, and using the return code
from the CMS command in the &EXIT statement:

&IF &RETCODE NE O &EXIT &RETICODE

270 IBM VM/370: CMS User's Guide

Terminal Communications

You can design EXECs to be used interactively, so that their execution
depends on information entered directly from the terminal during the
execution. With the &TYPE statement, you can display a line at the
terminal, and with the &READ statement, you can read one or more lines
from the terminal or console stack. Used together, these statements can
provide a prompting function in an EXEC:

ETYPE WHAT DO YOU WANT TO DO NOW?
&ETYPE ENTER (STOP CONTINUE REPEAT):
EREAD VARS &LABEL

§GOTO -&LABEL

-STOP

-CONTINUE

-REPEAT

In this example, the &READ control statement is used with the VARS
operand, which accepts the words entered at the terminal as values to be
assigned to variable symbols. If the word STOP is entered in respomse to
the EREAD VARS statement in this example, the variable symbol &LABEL is
assigned the value STOP. Then, in the §&GOTO statement, the symbol is
substituted with the value STOP, so the branch 1is taken to the label
-STOP.

You can specify up to 17 variable names on an §READ VARS control
statement. If you enter fewer words than are expected, the remaining
variables are set to blanks. If you enter a null line, any variable
symbols on the &READ 1line are set to blanks. If the execution of your
EXEC depends on a value entered as a result of an SREAD VARS, you might
want to include a test for a null 1line immediately following the
statement, for example:

&EREAD VARS &TITLE &SUBJ
&IF .&TITLE = . &EXIT 100

If no tokens are entered in response to the terminal read request, the
variable &€TITLE is null, and the EXEC terminates with a return code of
100.

If you are writing an EXEC that may receive a number of tokens from
the terminal, you may find it more convenient to use the &READ ARGS form
of the §READ control statement. When the EREAD ARGS statement reads a
line from the terminal, the tokens entered are assigned to the &n
special variables (&1, &2, and sc on).

READING CMS COMMANDS AND EXEC CONTROL STATEMENTS FROM THE TERMINAL

When you use the &EREAD control statement with no operands, or with a
numeric value, EXEC reads one line or the specified number of lines from
the terminal. These lines are treated, by EXEC, as if they were in the
EXEC file all along. For example, if you have an EXEC named COMMAND that
looks like the following:

Section 14. Building EXEC Procedures 271

&TYPE ENTER NEXT COMMAND:
EREAD 1
&§SKIP -2

all the commands you enter during the terminal session are processed by
the EXEC. FEach time the &READ statement is executed, you enter a CMS
command. When the command finishes, control returns to EXEC, which
prompts you to enter the next ccmmand. Since the CMS commands are all
being executed from within the EXEC, you do nct receive the CMS Ready
message at the completion of each command.

You could also enter EXEC control statements or assignment
statements. To terminate the EXEC and return to the CMS environment,
you must enter the EXEC control statement SEXIT from the terminal:

exit

DISPLAYING DATA AT A TERMINAL

You can use the §TYPE and &BEGTYPE control statements to display lines
from your EXEC at the terminal. In addition, you can use the CHS TYPE
command to display the contents of CMS files.

When you use the &TYPE control statement, you can display variable
symbols as well as data. Variable symbols on an &TYPE control statement
are substituted before they are displayed. For example, the lines:

ENAME = ARCHER
ETYPE &ENAME

result in the display:
ARCHER

You can use the STYPE statement to display prompting messages, error
or information messages, or lines of data.

In an EXEC file with fixed-length records, only the first 72
characters of each 1line are processed by the EXEC interpreter.
Therefore, if you want to use the STYPE control statement to display a
line 1longer than 72 characters, you must convert the file into
variable-length records.

A1l of +the words in an &TYPE control statement are scanned into
8-character tokens. If you need to display a word that has more than 8
characters, you must use the &EBEGTYPE control statement. The &BEGTYPE
control statement precedes one or more data lines that you want to
display, for example:

&BEGTYPE

THIS EXEC PERFORMS THE FOLLOWING FUNRCTIONS:

1. IT ACCESSES DISKS 193, 194, and 195 AS
B, C, AND D EXTENSIONS OF THE A-DISK.

2. IT DEFINES, FORMATS, AND ACCESSES A
TEMPORARY 195 DISK (E).

&END

272 IBM VM/370: CMS User's Guide

The 6&END statement must be used to terminate a series of 1lines
introduced with the &BEGTYPE statement. "SEND"™ must begin in column 1 of
the EXEC file.

The lines following an &BEGTYPE statement, up to the &END statement,
are not scanned by the EXEC interpreter. Therefore, no substitution is
performed on the variable symbols on these data lines. If you need to
display a symbol, you must use the §TYPE control statement. To disrlay a
combination of scanned and unscanned lines, you might need to use both
the STYPE and &BEGTYPE control statements:

§BEGTYFE

EVALUATION BEGINS...

SEND .

&§TYPE &VAL1 IS &NUM1.
ETYPE &VAL2 IS &NUM2.
§BEGTYPE

EVALUATION COMPLETE.

GEND

If you use the G&BEGTYPE control statement in an EXEC file with
fixed-length records, and you want to display lines longer than 72
characters, you must use the ALL operand. For example,

&EBEGTYPE ALL

«s.data line of 103 characters
.«.data line of 98 characters
...data line of 50 characters
&END

You can display lines of up to 130 characters in this way. When you
enter lines that are longer than the record length in an EXEC file, the
records are truncated by the editor. You must increase the record length
of the file by using the LRECL option of the EDIT command, for example:

edit 0ld exec a (lrecl 130

In a variable-length EXEC file, you do not need to specify ALL to
display long lines. If you originally created the file with a record
length of 130 characters, you do not need to increase the size later to
accomodate longer records.

AR memal dmdmemim e —————

You can use the TYPE command in an EXEC file to display data files, or
portions of data files. For example, you might have a number of files
with the same filetype; the files contain various kinds of data. 7You
could create an EXEC that invokes the TYPE coemmand to display a
particular file as follows:

&§IF EINDEX EQ 2 &IF &2 EQ ? 6§GOTO -TYPE

-TYPE
ACCESS 198 B
TYPE &1 MEMO B

The filetype MEMO is a reserved filetype, which accepts data in

uppercase and lowercase; you can use it for documentation files or
programming notes.

Section 14. Building EXEC Procedures 273

Controlling Terminal Displays

The two CMS Immediate commands that control terminal display are HT
(halt typing) and R7T (resume typing). When data is being displayed at
your terminal, you can suppress the display Ly signaling an attenticn
interrupt and entering:

ht
This command affects output that is being displayed:

» As a response to a CMS command, including prompting messages, error
messages, or normal display responses (as from the TYPE command)

» From a progran
e In response to an &§TYPE or &BEGTYPE request in an EXEC

Once display has been suppressed, and before the command, program, or
EXEC completes execution, you can request that display be resumed by
signaling another interrupt and entering:

rt

In an EXEC file, if you want to halt or resume display, you must use
the &STACK control statement to enter the RT or HT commands. For
example, the ACCESS command issues a message when a disk is accessed:

D(198) R/O

If you are going to issue the ACCESS command within an EXEC and you do
not wish this message displayed, you could enter the lines:

&§STACK HT
ACCESS 198 D

Once you have stacked an HT command, all displaying is suppressed for
the remainder of the EXEC file's execution, unless the RT Immediate
command is processed, either following an attention interrupt (as
described above) or within the EXEC. To execute the RT Inmediate
command in an EXEC, use the statement:

&§STACK RT

A physical read to the terminal, for example, the result of an &READ
control statement, also resets the display setting to RT.

The STYPEFLAG Special Variable: You can test the current value of the
display controlling an EXEC with the &TYPEFLAG special variable. The
value of STYPEFLAG can only be one of the literal values HT or RT. For
example:

EIF &§$ EQ NOTYPE &STACK HT

-

&IF ETYPEFLAG EC HT &SKIP 3
ETYPE LINE1

ETYPE LINE2

E§TYPE LINE3

ECONTINUE

In this example, if NOTYPE is entered as an arqument when the EXEC is
invoked, an HT command is stacked, so that no displaying is domne at the

274 IBM VM/370: CMS User's Guide

terminal. Within the EXEC, the variable §&TYPEFLAG is tested, and, if it
is HT, then a series of STYPE statements is skipped. Since EXEC does
not have to process these lines, you can save time and system resources
by not processing them.

Reading from the Console Stack

When you are in the CMS environment executing programs or CMS commands,
you can stack commands, either by entering multiple command lines
separated by the logical line end symbol, as follows:

print myfile listing#cp query printer

or by signaling an attention interrupt and entering a command line, as
follows:

print mnyfile listing
!
Cp query printer

In both of the preceding examples, the second command 1line is saved
in a terminal input buffer, called the console stack. Whenever a read
occurs in your virtual machine, CMS reads lines from the console stack,
if there are any lines in it. If there are no lines in the stack, the
read results in a physical read to your terminal (on a typewriter
terminal, the keyboard unlocks).

A virtual machine read occurs whenever a command or subcommand
finishes execution, or when an EXEC or a program issues a read request.
Many CMS commands also issue read requests, for example, SORT and
COPYFILE. If you want to execute one of these commands in an EXEC, you
may want to stack, in the console stack, the response to the read
request so that when it is issued it is immediately satisfied. For
example:

&ESTACK 42-121 1
COPYFILE &NAME LISTING A = ASSEMBLE = (SPECS

When the COPYFILE command is issued with the SPECS option, a prompting
message for a specification list is issued, followed by a read regquest.
In this BXEC, the request is satisfied with the line stacked with the
§STACK control statement. If the response was not stacked, you would
have to enter the appropriate information from the terminal during the
"execution of the EXEC that contained this COPYFILE command line.

In addition to stacking predefined responses to commands and
programs, you can use the console stack to stack CMS commands and EDIT
subcommands, as well as data lines to be read within the EXEC.

The number of 1lines that you can place in the conscle stack at any
one time varies according to the amount of storage available in your
virtual machine for stacking. You may want to stack ome or two lines at
a time, or you may wish to stack many lines. There are several features
available in EXEC that can help you manipulate the stack.

Just as the §TYPE control statement has an §BEGTYPE counterpart, the
§STACK control statement has an §BEGSTACK counterpart. You can stack

Section 14. Building EXEC Procedures 275

multiple data lines following an EBEGSTACK statement. Lines stacked in
this way are not scanned by the EXEC processor, and no substituticn is
performed on variable symbols. For example, the lines

&§BEGSTACK
«s.oline of data
...line of data
...line of data
GEND

stack three data lines in the stack. The stacked lines must be followed
by an &END control statement, which must be entered in the EXEC file
beginning in column 1.

If you have an EXEC with fixed-length records, and you want to stack
data lines longer than 72 characters, you mnust use the ALL operand of
the §BEGSTACK control statement:

&EBEGSTACK ALL

«.eo.line of 103 characters
...line of 98 characters
...line of 60 characters
SEND

The ALL operand is not necessary for variable-length EXEC files.

Stacking FIFQ and LIFO

When you are stacking multiple lines in an EXEC, you may choose to
reverse the sequence in which 1lines are read in from the stack. The
default sequence is FIFO (first-in, first-out), but you may specify LIFO
(last-in, first-out) when you enter the &STACK or &BEGSTACK control
statement. For example, execution of the lines

&STACK &TYPE A
ESTACK §TYPE B
&§STACK LIFO &TYPE C
ESTACK LIFO &TYPE D
&ESTACK &TIYPE E

results in the display:

Ho> Qo

The &READFLAG Special Variable

The EXEC special variable SREADFLAG always contains one of two values,
STACK or CONSOLE. When it contains the value STACK, it indicates that
there are lines in the stack. When it contains the value CONSOLE, it
indicates that the stack is empty and that the next read reguest results
in a physical read to the terminal (console).

You can test this value in an EXEC, for example:

276 IBM VM/370: CMS User's Guide

EIF EREADFLAG EC STACK &SKIP 2
&ETYPE STACK EMPTY

EEXIT

SCONTINUE

You might use a similar test in an EXEC that processes a number of lines
from the stack, and 1loops through a series of steps until the stack is
empty.

STACKING CMS COMMANDS

Whenever you place a command in the console stack, it remains there
until a read request is presented to the terminal. If the request is the
result of an &READ control statement, then the 1line is read from the
stack. For example, the lines

&E§STACK CP QUERY TIME
EREAD

result in the command line being stacked, read in, and then executed.

If there are no read requests in an EXEC file, then any commands that
are stacked are executed after the EXEC has finished and has returned
control to the CMS environment. For example, consider the lines:

TYPE &1 LISTING A
ACCESS 198 A
TYPE &1 LISTING A

If this EXEC is located on your 191 A-disk, then when the ACCESS command
accesses a new A-disk, CMS can not continue reading the EXEC file, and
issues an error message. However, if the EXEC was written as follows:

TYPE &1 LISTING A
§STACK ACCESS 198 A
&STACK TYPE &1 LISTING A

then, after the TYPE command, the next command lines are stacked, the
EXEC finishes executing and returns control to CMS, which reads the next
command lines from the console stack.

When you stack CMS commands in an EXEC procedure, you cannot place
multiple command 1lines in one statement (for example, print abc
listing#print xyz listing), because CMS does not recognize the logical
line end (X'15").

Stacking EDIT Subcommands

If you want to issue the EDIT command from within an EXEC, you might
want to stack EDIT subcommands tc be read by the CMS Editor. You should
stack these subcommands, either with &STACK statements, or with the
&§BEGSTACK statement, just before issuing the EDIT command. For example:

&EBEGSTACK

CASE M

GET SETUP FILE A 1 20
TOP

LOCATE /XX/

GEND

&STACK REPLACE

EDIT &1 DATA (LRECL 120

Section 14. Building EXEC Procedures 277

If this EXEC is named EDEX, and you invoke it with
edex fro1

the EDIT subcommands are stacked in the order they appear in the EXEC.
The EDIT command is invoked to edit the file FRO1 DATA, and the EDIT
subconmands are read from the stack and executed. When the stack is
empty, your virtual machine is in the edit enviromment in input mode,
and the first line you enter replaces the existing line that contains
the character string XX.

Note that all of the EDIT subcommands in the example, except for the
REPLACE subcommand, are stacked within an §&BEGSTACK stack, and that the
REPLACE subcommand is stacked with &STACK. If you are creating EXEC
files with fixed-length records, you must use §STACK to stack the INPUT
and REPLACE subcommands. If you use &BEGSTACK, then the INPUT and
REPLACE subcommands are treated as if they contain text data, and so
insert or replace one line in the file (a line of blanks). This is not
true, however, for variable-length EXEC files.

Similarly, if you want to stack a null 1line, to change £from input
mode to edit mode in an EXEC, you must use the §STACK statement with no
other data on the line (in both fixed- and variable-length EXEC files),
for example:

&STACK INPUT
&EBEGSTACK

...data line
...data line
...data line

&END

§STACK
&STACK FILE
EDIT &1 &2
SEXIT

When this EXEC is invoked with a filename and filetype as arqguments, the
INPUT subcommand, data lines, null line, and FILE subcommand are placed
in the stack before +the EDIT command is issued. The data 1lines are
placed in the specified file and the file is written onto disk before
the EXEC returns control to CMS.

STACKING LINES FOR EXEC TO READ

Lines in the console stack can ke read by the EXEC interpreter with an
&REAT control statement, for example,

-SETUP
&ELOOP 3 &NUM = 50
ESTACK &ENUM &CHAR
ENUM = &ENUM + 1
ECHAR = ECONCAT &STRNG &NUM

-READ
§LOOP -FINIS &READFLAG EQ CONSOLE
&EREAD ARGS

-FINIS

278 IBM VM/370: CMS User's Guide

In this EXEC procedure, the statements following the label -SETUP stack
a number of 1lines. The variables &NUM and SCHAR are substituted before
they are stacked. At the label -READ, the lines are read in from the
stack and processed. The values stacked are read in as the variable
symbols &1 and §2. Control passes out of the 1loop when the stack is
empty.

CLEARING THE CONSOLE STACK

If you use the consocle stack in an EXEC procedure, you should be sure
that it is empty before you begin stacking 1lines in it. Balso, you
should be sure that it is empty before exiting from the EXEC (unless you
have purposely stacked CHMS commands for execution).

One way to clear a 1line from the stack without affecting the
execution of your EXEC is to use the SREAD VARS or §&READ ARGS ccntrol
statement. You can wuse &READ VARS without specifying any variable
symbols so that +the line read is read in and effectively ignored. For
example:

&LOOP 1 EREADFLAG EQ CONSOLE
&READ VARS

If these lines occur at the beginning of an EXEC file, they ensure that
any stacked lines are cleared. - If the EXEC is named EXEC?1 and is
invoked with the line:

execl#type help memc#type print memo

then the lines TYPE HELP MEMO and TYPE PRINT MEMO are cleared frcm the
stack and are not executed.

You could use the same technique to clear the stack in case of an
error encountered in your EXEC, so that the stack is cleared before
returning to CMS. You would especially want to do this if you stacked
data lines or EXEC control statements that have no meaning to CHMS.

Another way to <clear the console stack is with the CMS function
DESBUF. For example,

6IF &READFLAG EQ STACK DESBUF

When you use the DESBUF function to clear the console input stack, the
output stack is also cleared. The output stack contains 1lines that are
waiting to be displayed or typed at the terminal. Frequently, when an
EXEC is processing, output 1lines are stacked, and are not disrlayed
immediately following the execution of an §&TYPE statement. If you want
to display all pending output lines before clearing the console input
stack, you should use the CONWAIT function, as follows:

CONWAIT
&€IF EREADFLAG EQ STACK DESBUF

The CONWAIT (console wait) function causes a suspension of program
execution until the console output stack is empty. If there are no lines
waiting to be displayed, CONWAIT has no effect.

Clearing the stack is important when you write edit macros, since all
subccmmands issued in an edit mac¢ro must be first stacked. See "Secticn
17. Writing Edit Macros" for additional information on using the console
stack.

Section 14. Building EXEC Procedures 279

File Manipulation with EXECs

You can, to a limited degree, read and write CMS disk files using EXECs.
You can stack files with a filetype of EXEC in the console stack and
then read them, one record at a time, with EREAL control statements. All.
data items are truncated to 8 characters. You can vwrite a file, one
record at a time, with the §PUNCH control statement, and then you can
read the spool punch file ontc disk. Examples of these techniques
follow.

STACKING EXEC FILES

There are two methods to stack EXEC files in the ccnsole stack. One is
illustrated using a CMS EXEC file, as shown in the following PREFIX
EXEC:

SLNAME = ECONCAT &1 *

LISTFILE &LNAME SCRIPT * (EXEC
EXEC CMS &STACK

§LOOP -END &READFLAG EQ CONSOLE
EREAD VARS ENAME &TYPE &MOD
ESUFFIX = ESUBSTR &NAME 3 5
ENEWNAM = &CONCAT &2 &SUFFIX
RENAME &ENAME 6TYPE &MOD &ENEWNAM &TYPE &EMOD
&IF &RETCODE EQ 0 &SKIP

E§TYPE FILE &NAME &TYPE NOT RENAMED
-END

This EXEC procedure is invoked with two arguments, each 2 characters in
length, which indicate old and new prefixes for filenames. The EXEC
renames files with a filetype of SCRIPT that have the first prefix,
changing only the prefix in the filenanme.

The LISTFILE command, invoked with the EXEC option, creates a CHMS
EXEC file in the format:

&1 &2 filename SCRIPT mode
When the EXEC is invoked with the line
EXEC CMS &STACK

the argument §&STACK is substituted for the variable symbol &1 in each
line in the CMS EXEC. The execution of the CMS EXEC effectively stacks,
in the console stack, the complete file identifications of the files
listed:

§STACK filename SCRIPT mode
ESTACK filename SCRIPT mode

These stacked lines are read back into the EXEC, one at a time, and the
tokens "filename™, “"SCRIPT", and "mode" are substituted for the variable
symbols &ENAME, &TYPE, and &MOD.

Using the &SUBSTR and SCONCAT built-in functions, the new name for

each file is constructed, and the RENAME command is issued to rename the
files.

280 IBM VM/370: CMS User's Guide

For example, if you invoke the EXEC procedure with the line
prefix alb xy

all SCRIPT files that have filenames beginning with the characters AB
are renamed so that the first two characters of the filename are XY. A
sample execution summary of this EXEC is illustrated under "Debugging
EXEC Procedures" in "Section 16. Refining Your EXEC Procedures."

You can create a data file, containing fixed-length records, using a
filetype of EXEC. To stack these data lines in the console stack, you
can enter them following an &BEGSTACK (or &BEGSTACK ALL) ccntrol
statement. For example, the file DATA EXEC is as follows:

SBEGSTACK
HARRY 10/12/48
PATTI 1/18/49
DAVID 5,/20/70
KATHY 8/6/43
MARVIN 2/28/50

The file BDAY EXEC contains:

&CONTROL ERROR

EXEC DATA

&IF &EREADFLAG EQ CONSOLE &GOTO =-NO
EREAD VARS &NAME EDATE

&IF ENAME NE &1 &SKIP -2
-FOUND

&§IF .&1 EQ . &EXIT

§TYPE &1 'S BIRTHDAY IS &DATE
CONWAIT

DESBUF

&EXIT

-NO &TYPE &1 NOT IN LIST
&EEXIT

When the BDAY EXEC is invoked, it expects an argument that is a first
name. The function of +the EXEC is to display the birthday of the
specified person. A sample execution of this EXEC might be:

bday kathy
KATHY 'S BIRTHDAY IS 8/6/43
R;

BDAY EXEC first executes the DATA EXEC, which stacks names and dates
in the console stack. Then, BDAY EXEC reads one line at a time from the
stack, assigning the variable names §&NAME and 6&DATE to the tokens on
each line. It compares &NAME with the arqument read as &1. When it finds
a match, it displays the message indicating the date, and clears the
console stack after waiting for terminal output to finish.

Note that the file DATA EXEC begins with an 6EBEGSTACK control
statement, but contains no &END statement. The stack is terminated by
the end of the EXEC file. "Writing Data Files" describes a technique
you might use to add new names and birth dates to the DATA EXEC file.

Section 14. Building EXEC Procedures 281

You can build a CMS file in your virtual card punch using the &PUNCH and
£ BEGPUNCH control statements. Depending on the spooling characteristics
of your virtual punch, the file that you build may be sent to another
user's card reader, or to your own virtual card reader. When you read
the file with the CMS READCARD command, the spool reader file becomes a
CMs disk file.

The following example illustrates how you might use your card punch
and reader to update a CMS file by adding records to the end of it. The
file being wupdated is the DATA EXEC, which is the input file for the
EDAY EXEC, shown in the example in nStacking Data Files." You could
create a separate EXEC to perform the update, but this example shows how
you might modify the BDAY EXEC to perform the addition function
(ellipses indicate the body of the EXEC, which is unchanged):

&CONTROL ERROR
6IF &1 EQ ADD §GOTO -ADDNAME

§EXIT

-ADDNAME

6TYPE ENTER FIRST NAME AND CATE IN FORM MM/DD/YY
SREAD VARS &ENAME &DATE

S§IF .ENAME = . &SKIP 3

&PUNCH &ENAME &EDATE

@rYPE ENTER NEXT NAME OR NULL LINE:
§ESKIP -4

CP SPOOCL PUNCH TO *

CP CLOSE PUNCH

READCARD NEW NAMES

COPYFILE NEW NAMES A DATA EXEC A (APPEND
6IF SRETCODE = 0 &SKIP 2

&§TYPE ERROR CREATING FILE

EEXIT ERETCCDE

ERASE NEW NAMES

When BDAY EXEC is invoked with the keyword ADD, you are prompted to
enter lines to be added to the data file. Each line that you enter is
punched to the card punch. When you enter a null line, indicating that
you have finished entering lines, the CP commands SPOOL and CLOSE direct
the spool file to your card reader and close the punch.

The file is read in as the file NEW NAMES, which is appended to the

file DATA EXEC using the COPYFILE command with the APPEND option. The
file NEW NAMES is erased and the EXEC terminates processing.

Using Your Virtual Card Punch

When you punch lines in your virtual punch, the lines are not released
as a CP spool file until the punch is closed. Since the EXEC processor
does not close the virtual punch when it terminates processing, you must
jssue the CLOSE command to release the file. You can do this in the EXEC
with the command line

CP CLOSE PUNCH

or from the CMS environment after the EXEC has finished. If you use the
CLOSE command in the EXEC, you must preface it with CP.

282 IBM VM/370: CMS User's Guide

The CMS PUNCH command, which you can use in an EXEC to punch an
entire CMS file, does clcse the punch after punching a file. Therefore,
if you want to create a punch file using a comktination of SPUNCH ccntrol
statements and PUNCH commands, you must spool your punch using the CONT
option, so that a close request does not affect the file:

‘" CP SPOOL PUNCH TO * CONT
&EPUNCH FIRST FILE

&EPUNCH

PUNCH FILE1 TEST (NOHEADER
&EPUNCH SECOND FILE

EPUNCH

PUNCH FILE2 TEST (NOHEADER
CP SPCOL PUNCH CLOSE NOCONT

The preceding example punches title lines introducing the files punched
with the CMS PUNCH command. The null §PUNCH statements punch blank
lines. The PUNCH command is issued with the NOHEADER option, so that a
read control card is not punched.

You can also use an EXEC procedure to punch a job to send to the CMS
Batch Facility for processing. The batch facility, and an examgle cf
using an EXEC to punch a job to it, are described in "Section 12. Using
the CMS Batch Facility.®

Using &PUNCH and §BEGPUNCH

All 1lines punched to the virtual card punch are fixed-length,
80-character records. When you use the §PUNCH control statement in a
fixed-length EXEC file, EXEC scans only the first 72 columns of the
EXEC.

If you want to punch a word that contains more than 8 characters, you

must use the &EBEGPUNCH control statement, which also, in fixed-length
files, causes EXEC to punch data in columns 1 through 80.

Section 14. Building EXEC Procedures 283

Section 15. Using EXECs with CMS Commands

Whenever you create an EXEC file you are, for all practical purposes,
creating a new CMS command. When you enter a command line in the CMS
environment, CMS searches for an EXEC file with the specified filenanme
before searching for a MODULE file or CMS command. You can place the
names of your EXEC files in a synonym table and assign minimunm
truncation values for the synonyms, just as you can for CMS command
names.

While many of your EXEC procedures may be very simple, others may be
very long and complicated, and perform many of the housekeeging

functions performed by CMS commands, such as syntax checking, error
message generation, and so on.

Monitoring CMS Command Execution

Many, or most, of your EXEC procedures may contain sequences of CMS
commands that you want to execute. If your EXEC procedure contains no
EXEC control statements, each command line is displayed and then the
command is executed. If an error occurred, the CMS error nmessage is
displayed, followed by a return code in the format:

+++ R(nnnnn) +++

where nnnnn is the nonzero return code from the CMS command. If the
command is not a valid CMS command, the return code is a -3:

+++ R(-0003) +++
You may also receive this error return when you use a CP command without
prefacing it with the CP command. If you enter an unknown CP command
following "CP", you receive a return code of 1.

If a command completes successfully, no return code is displayed.

If you do not want to see the command lines displayed before
execution, nor return codes following execution, you can use the EXEC
control statement:

§CONTROL OFF

Or, if you want to see only the command lines that produced errors, and
the resultant return codes, you can specify:

&ECONTROL ERROR
Regardless of these settings of the &CONTROL statement, CMS error
messages are displayed, as long as the value of &READFLAG is RT, and the
terminal is displaying output.

If you issue the LISTFILE, STATE, ERASE, or RENAME commands in an
EXEC procedure, and you do not want to see the error message FILE NIT
FOUNLC displayed, you can use the statement:

ECONTROL NOMSG

to suppress the display of these particular messages.

Section 15. Using EXECs with CMS Commands 285

You can request that particular timing information be disglayed
during an EXEC's execution. If you want to display the time of day at
which each command executes, you can specify

&ECONTROL TIME

Then, as each command line is displayed, it is prefaced with the time,
for example,

ECONTRCL CMS TIME
QUERY BLIP

executes as follows:

10:34:16 QUERY BLIP
BLIP = %

If you wish to see, following the execution of each CHMs command,
specific CPU timing information, such as the long form of the Ready
message, you can use the §TIME control statement. For example,

ETIME CR
QUERY BLIP
QUERY FILEDEF

might execute as:

QUERY BLIP
BLIP = OFF
T=0.01,/0.04 10:44:21

QUERY FILEDEF
NO USER DEFINED FILEDEF'S IN EFFECT
T=0.01/0.04 10:45:26

Handling Error Returns From CMS Commands

In many cases, you want to execute a command only if previous commands
were successful. For example, you would not want to execute a PRINT
command to print a file if you had been unaktle to access the disk on
which the file resided. There are two methods, using EXEC procedures,
that allow you to monitor and control what happens following the
execution of CMS commands. One method uses the EXEC control statement
SERRCR to transfer control when an error occurs; the other tests the
special variable §RETCODE upon ccmpletion of a CMS command to determine
wvhether that particular command completed successfully.

USING THE &EERROR CONTROL STATEMENT

#hen a CMS command is executed within an EXEC, a return code is passed
to the EXEC interpreter, indicating whether or not the command completed
successfully. If the return code is nonzero, EXEC then activates the
&§ERROR control statement currently in effect. For example, if the
following statement is included at the beginning of an EXEC file

S ERROR &EXIT
then, whenever a CMS command (or user program) completes with a ncnzero

return code, the §EXIT statement in the EERROR statement is executed,

286 IBM VM/370: CMS User's Guide

and the EXEC terminates processing. You might use a similar statement
in your EXECs to ensure that they do not attempt to continue processing
in the event of an error.

An &§ERROR control statement can specify any executable statement. It
may transfer control to another portion of the EXEC, or it many be a
single statement that executes before control is returned to the next
statement in the EXEC. Por exanmple,

&§ERROR &GOTO -EXIT

transfers control to the label -EXIT, in case of any CMS error. The
statement

EERROR ETYPE CMS ERROR

results in the display of the message "CMS ERROR" before returning
control to the statement following the command that caused the error.

If you do not have an &ERROR control statement in an EXEC, or if you
specify &ERROR with no operands, EXEC takes no special action when a CMS
command returns with an error return code. Specifying SERROR with no
operands is the same as specifying:

EERROR &CONTINUE

Since an &ERBOR control statement remains in effect for the remainder
of the EXEC execution, or until another EERRCR control statement is
encountered, you may use SERROR ECONTINUE to restore default
processing.

USING THE &SRETCODE SPECIAL VARIAELE

An error return from a CMS command, in addition to calling an &ERROR
control statement, also places the return code value in the EXEC special
variable ERETCODE. Following the execution of any CMS command in an
EXEC procedure, you can test whether or not the command ccmpleted
without error. For example,

TYPE ALPHA FILE A
&IF &RETCODE -~= 0 &EXIT
TYPE BETA FILE A
&IF &ERETCODE -= 0 &EXIT

Bote that the value of &RETCODE is modified after the execution of each
CMS command.

The value of &RETCODE is affected by your own programs. If you
execute a program in your EXEC using the LCAD and START (or FETCH and
START) commands, or if you execute a MODULE file, then the ERETCODE
special variable contains whatever value was in general register 15 when
the program exited. If you are nesting EXEC procedures, then SRETCODE
contains the value passed from the SEXIT statement of the nested EXEC.

You can use the value of the return code, as well, to analyze the
extent or the cause of the error, and set up an error analysis routine
accordingly. For example, suppose you want to set up an analysis
routine to identify return codes 1 through 11, and to exit from the EXEC
wvhen the return code is greater than 11. When a return code is
identified, control is passed to a corresponding routine that attempts
to correct the error. You could set up such an analysis routine as
follows:

Section 15. Using EXECs with CMS Commands 287

-ERRANAL

&CNT = 0

§LOOP 2 &CNT EQ 12

&IF &RETCODE EQ &CNT §GOTO -FIXECNT
ECNT = &CNT + 1

-FIX0 &GOTO -ALLOK
-FIX1

€GOTO -ALLOK
-FIX2

&§GOTO -ALLOK

-FIX 11

-ALLOK

When the value of the &CNT variable equals the return code value in
ERETCODE, the branch to the corresponding -FIX routine is taken. Each
corrective routine performs different actions, depending on its ccode,
and finishes at the routine labeled -ALLOK.

You can, in some cases, determine the cause of a CMS command error
and attempt to correct it in your EXEC. To do this, you must know the
return codes issued by VM/370 commands. See VM/370: System Messages for
a discussion of the return codes for VM/370 commands. In addition, the
error messages and corresponding return codes are listed under the
command descriptions for each CMS command in the VYM/370: CMS Command and
Macro Reference.

As an example, all CMS commands that search for files issue a return
code of 28 when a file is not found. If you want to test for a file not
found condition in your EXEC, you might use statements similar to the
following:

ECONTRCL OFF NOMSG

.

TYPE HELP MEMO A
&IF ERETCODE = 28 &GOTO -NOFILE

Tailoring CMS Commands for Your Own Use

You can create EXEC procedures that simplify or extend the use of a
particular CMS command. Depending on your applications, you can modify
the CMS command language to suit your needs. You can create EXEC files
that have the same names as CMS commands, and, since CMS locates EXEC
files before MODULE files, the EXEC is found first. For exanmple, the
COPYFILE command, when